This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pilem1 | ⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ 𝐴 ∈ ( ◡ sin “ { 0 } ) ) ) | |
| 2 | sinf | ⊢ sin : ℂ ⟶ ℂ | |
| 3 | ffn | ⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) | |
| 4 | fniniseg | ⊢ ( sin Fn ℂ → ( 𝐴 ∈ ( ◡ sin “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( 𝐴 ∈ ( ◡ sin “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |
| 6 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 7 | 6 | biantrurd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) ) ) |
| 8 | 5 7 | bitr4id | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ( ◡ sin “ { 0 } ) ↔ ( sin ‘ 𝐴 ) = 0 ) ) |
| 9 | 8 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ∈ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |
| 10 | 1 9 | bitri | ⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |