This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pire , pigt2lt4 and sinpi . Existence part. (Contributed by Paul Chapman, 23-Jan-2008) (Proof shortened by Mario Carneiro, 18-Jun-2014) (Revised by AV, 14-Sep-2020) (Proof shortened by BJ, 30-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pilem3 | |- ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | 1 | a1i | |- ( T. -> 2 e. RR ) |
| 3 | 4re | |- 4 e. RR |
|
| 4 | 3 | a1i | |- ( T. -> 4 e. RR ) |
| 5 | 0red | |- ( T. -> 0 e. RR ) |
|
| 6 | 2lt4 | |- 2 < 4 |
|
| 7 | 6 | a1i | |- ( T. -> 2 < 4 ) |
| 8 | iccssre | |- ( ( 2 e. RR /\ 4 e. RR ) -> ( 2 [,] 4 ) C_ RR ) |
|
| 9 | 1 3 8 | mp2an | |- ( 2 [,] 4 ) C_ RR |
| 10 | ax-resscn | |- RR C_ CC |
|
| 11 | 9 10 | sstri | |- ( 2 [,] 4 ) C_ CC |
| 12 | 11 | a1i | |- ( T. -> ( 2 [,] 4 ) C_ CC ) |
| 13 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 14 | 13 | a1i | |- ( T. -> sin e. ( CC -cn-> CC ) ) |
| 15 | 9 | sseli | |- ( y e. ( 2 [,] 4 ) -> y e. RR ) |
| 16 | 15 | resincld | |- ( y e. ( 2 [,] 4 ) -> ( sin ` y ) e. RR ) |
| 17 | 16 | adantl | |- ( ( T. /\ y e. ( 2 [,] 4 ) ) -> ( sin ` y ) e. RR ) |
| 18 | sin4lt0 | |- ( sin ` 4 ) < 0 |
|
| 19 | sincos2sgn | |- ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 ) |
|
| 20 | 19 | simpli | |- 0 < ( sin ` 2 ) |
| 21 | 18 20 | pm3.2i | |- ( ( sin ` 4 ) < 0 /\ 0 < ( sin ` 2 ) ) |
| 22 | 21 | a1i | |- ( T. -> ( ( sin ` 4 ) < 0 /\ 0 < ( sin ` 2 ) ) ) |
| 23 | 2 4 5 7 12 14 17 22 | ivth2 | |- ( T. -> E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 ) |
| 24 | 23 | mptru | |- E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 |
| 25 | df-pi | |- _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) |
|
| 26 | inss1 | |- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR+ |
|
| 27 | rpssre | |- RR+ C_ RR |
|
| 28 | 26 27 | sstri | |- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR |
| 29 | 0re | |- 0 e. RR |
|
| 30 | 26 | sseli | |- ( z e. ( RR+ i^i ( `' sin " { 0 } ) ) -> z e. RR+ ) |
| 31 | 30 | rpge0d | |- ( z e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 0 <_ z ) |
| 32 | 31 | rgen | |- A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z |
| 33 | breq1 | |- ( y = 0 -> ( y <_ z <-> 0 <_ z ) ) |
|
| 34 | 33 | ralbidv | |- ( y = 0 -> ( A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z <-> A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z ) ) |
| 35 | 34 | rspcev | |- ( ( 0 e. RR /\ A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ z ) -> E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) |
| 36 | 29 32 35 | mp2an | |- E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z |
| 37 | elioore | |- ( x e. ( 2 (,) 4 ) -> x e. RR ) |
|
| 38 | 37 | adantr | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. RR ) |
| 39 | 0red | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 e. RR ) |
|
| 40 | 1 | a1i | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 2 e. RR ) |
| 41 | 2pos | |- 0 < 2 |
|
| 42 | 41 | a1i | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 < 2 ) |
| 43 | eliooord | |- ( x e. ( 2 (,) 4 ) -> ( 2 < x /\ x < 4 ) ) |
|
| 44 | 43 | simpld | |- ( x e. ( 2 (,) 4 ) -> 2 < x ) |
| 45 | 44 | adantr | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 2 < x ) |
| 46 | 39 40 38 42 45 | lttrd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> 0 < x ) |
| 47 | 38 46 | elrpd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. RR+ ) |
| 48 | simpr | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` x ) = 0 ) |
|
| 49 | pilem1 | |- ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( x e. RR+ /\ ( sin ` x ) = 0 ) ) |
|
| 50 | 47 48 49 | sylanbrc | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
| 51 | infrelb | |- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z /\ x e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ x ) |
|
| 52 | 28 36 50 51 | mp3an12i | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ x ) |
| 53 | 25 52 | eqbrtrid | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi <_ x ) |
| 54 | simpll | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> x e. ( 2 (,) 4 ) ) |
|
| 55 | simpr | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
|
| 56 | pilem1 | |- ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( y e. RR+ /\ ( sin ` y ) = 0 ) ) |
|
| 57 | 55 56 | sylib | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( y e. RR+ /\ ( sin ` y ) = 0 ) ) |
| 58 | 57 | simpld | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> y e. RR+ ) |
| 59 | simplr | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( sin ` x ) = 0 ) |
|
| 60 | 57 | simprd | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( sin ` y ) = 0 ) |
| 61 | 54 58 59 60 | pilem2 | |- ( ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) /\ y e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> ( ( _pi + x ) / 2 ) <_ y ) |
| 62 | 61 | ralrimiva | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) |
| 63 | 28 | a1i | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR ) |
| 64 | 50 | ne0d | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) ) |
| 65 | 36 | a1i | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) |
| 66 | infrecl | |- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
|
| 67 | 28 36 66 | mp3an13 | |- ( ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
| 68 | 64 67 | syl | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
| 69 | 25 68 | eqeltrid | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. RR ) |
| 70 | 69 38 | readdcld | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi + x ) e. RR ) |
| 71 | 70 | rehalfcld | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) e. RR ) |
| 72 | infregelb | |- ( ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. y e. RR A. z e. ( RR+ i^i ( `' sin " { 0 } ) ) y <_ z ) /\ ( ( _pi + x ) / 2 ) e. RR ) -> ( ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) ) |
|
| 73 | 63 64 65 71 72 | syl31anc | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) ( ( _pi + x ) / 2 ) <_ y ) ) |
| 74 | 62 73 | mpbird | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) ) |
| 75 | 74 25 | breqtrrdi | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) <_ _pi ) |
| 76 | 69 | recnd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. CC ) |
| 77 | 38 | recnd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. CC ) |
| 78 | 76 77 | addcomd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi + x ) = ( x + _pi ) ) |
| 79 | 78 | oveq1d | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( _pi + x ) / 2 ) = ( ( x + _pi ) / 2 ) ) |
| 80 | 79 | breq1d | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) ) |
| 81 | avgle2 | |- ( ( x e. RR /\ _pi e. RR ) -> ( x <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) ) |
|
| 82 | 38 69 81 | syl2anc | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( x <_ _pi <-> ( ( x + _pi ) / 2 ) <_ _pi ) ) |
| 83 | 80 82 | bitr4d | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( ( ( _pi + x ) / 2 ) <_ _pi <-> x <_ _pi ) ) |
| 84 | 75 83 | mpbid | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x <_ _pi ) |
| 85 | 69 38 | letri3d | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi = x <-> ( _pi <_ x /\ x <_ _pi ) ) ) |
| 86 | 53 84 85 | mpbir2and | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi = x ) |
| 87 | simpl | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> x e. ( 2 (,) 4 ) ) |
|
| 88 | 86 87 | eqeltrd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> _pi e. ( 2 (,) 4 ) ) |
| 89 | 86 | fveq2d | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` _pi ) = ( sin ` x ) ) |
| 90 | 89 48 | eqtrd | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( sin ` _pi ) = 0 ) |
| 91 | 88 90 | jca | |- ( ( x e. ( 2 (,) 4 ) /\ ( sin ` x ) = 0 ) -> ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) ) |
| 92 | 91 | rexlimiva | |- ( E. x e. ( 2 (,) 4 ) ( sin ` x ) = 0 -> ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) ) |
| 93 | 24 92 | ax-mp | |- ( _pi e. ( 2 (,) 4 ) /\ ( sin ` _pi ) = 0 ) |