This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin4lt0 | ⊢ ( sin ‘ 4 ) < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 2 | 1 | fveq2i | ⊢ ( sin ‘ ( 2 · 2 ) ) = ( sin ‘ 4 ) |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | sin2t | ⊢ ( 2 ∈ ℂ → ( sin ‘ ( 2 · 2 ) ) = ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( sin ‘ ( 2 · 2 ) ) = ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) |
| 6 | 2 5 | eqtr3i | ⊢ ( sin ‘ 4 ) = ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) |
| 7 | sincos2sgn | ⊢ ( 0 < ( sin ‘ 2 ) ∧ ( cos ‘ 2 ) < 0 ) | |
| 8 | 7 | simpri | ⊢ ( cos ‘ 2 ) < 0 |
| 9 | 2re | ⊢ 2 ∈ ℝ | |
| 10 | recoscl | ⊢ ( 2 ∈ ℝ → ( cos ‘ 2 ) ∈ ℝ ) | |
| 11 | 9 10 | ax-mp | ⊢ ( cos ‘ 2 ) ∈ ℝ |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | resincl | ⊢ ( 2 ∈ ℝ → ( sin ‘ 2 ) ∈ ℝ ) | |
| 14 | 9 13 | ax-mp | ⊢ ( sin ‘ 2 ) ∈ ℝ |
| 15 | 7 | simpli | ⊢ 0 < ( sin ‘ 2 ) |
| 16 | 14 15 | pm3.2i | ⊢ ( ( sin ‘ 2 ) ∈ ℝ ∧ 0 < ( sin ‘ 2 ) ) |
| 17 | ltmul2 | ⊢ ( ( ( cos ‘ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( sin ‘ 2 ) ∈ ℝ ∧ 0 < ( sin ‘ 2 ) ) ) → ( ( cos ‘ 2 ) < 0 ↔ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < ( ( sin ‘ 2 ) · 0 ) ) ) | |
| 18 | 11 12 16 17 | mp3an | ⊢ ( ( cos ‘ 2 ) < 0 ↔ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < ( ( sin ‘ 2 ) · 0 ) ) |
| 19 | 8 18 | mpbi | ⊢ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < ( ( sin ‘ 2 ) · 0 ) |
| 20 | 14 | recni | ⊢ ( sin ‘ 2 ) ∈ ℂ |
| 21 | 20 | mul01i | ⊢ ( ( sin ‘ 2 ) · 0 ) = 0 |
| 22 | 19 21 | breqtri | ⊢ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < 0 |
| 23 | 14 11 | remulcli | ⊢ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ∈ ℝ |
| 24 | 2pos | ⊢ 0 < 2 | |
| 25 | 9 24 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 26 | ltmul2 | ⊢ ( ( ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < 0 ↔ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < ( 2 · 0 ) ) ) | |
| 27 | 23 12 25 26 | mp3an | ⊢ ( ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < 0 ↔ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < ( 2 · 0 ) ) |
| 28 | 22 27 | mpbi | ⊢ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < ( 2 · 0 ) |
| 29 | 3 | mul01i | ⊢ ( 2 · 0 ) = 0 |
| 30 | 28 29 | breqtri | ⊢ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < 0 |
| 31 | 6 30 | eqbrtri | ⊢ ( sin ‘ 4 ) < 0 |