This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| ivth2.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐴 ) ) ) | ||
| Assertion | ivth2 | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 4 | ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | ivth2.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐴 ) ) ) | |
| 9 | 3 | renegcld | ⊢ ( 𝜑 → - 𝑈 ∈ ℝ ) |
| 10 | eqid | ⊢ ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) | |
| 11 | 10 | negfcncf | ⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
| 13 | 5 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ 𝐷 ) |
| 14 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 15 | 14 | negeqd | ⊢ ( 𝑦 = 𝑥 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 16 | negex | ⊢ - ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 17 | 15 10 16 | fvmpt | ⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 18 | 13 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 19 | 7 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 20 | 18 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 21 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 22 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 23 | 1 2 4 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 24 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 25 | 21 22 23 24 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 | 5 25 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 27 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 28 | 27 | negeqd | ⊢ ( 𝑦 = 𝐴 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 29 | negex | ⊢ - ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 30 | 28 10 29 | fvmpt | ⊢ ( 𝐴 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 31 | 26 30 | syl | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 32 | 8 | simprd | ⊢ ( 𝜑 → 𝑈 < ( 𝐹 ‘ 𝐴 ) ) |
| 33 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) ) |
| 35 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 36 | 34 35 25 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 37 | 3 36 | ltnegd | ⊢ ( 𝜑 → ( 𝑈 < ( 𝐹 ‘ 𝐴 ) ↔ - ( 𝐹 ‘ 𝐴 ) < - 𝑈 ) ) |
| 38 | 32 37 | mpbid | ⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐴 ) < - 𝑈 ) |
| 39 | 31 38 | eqbrtrd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) < - 𝑈 ) |
| 40 | 8 | simpld | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) < 𝑈 ) |
| 41 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) ) |
| 43 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 44 | 21 22 23 43 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 | 42 35 44 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 46 | 45 3 | ltnegd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < 𝑈 ↔ - 𝑈 < - ( 𝐹 ‘ 𝐵 ) ) ) |
| 47 | 40 46 | mpbid | ⊢ ( 𝜑 → - 𝑈 < - ( 𝐹 ‘ 𝐵 ) ) |
| 48 | 5 44 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 49 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 50 | 49 | negeqd | ⊢ ( 𝑦 = 𝐵 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 51 | negex | ⊢ - ( 𝐹 ‘ 𝐵 ) ∈ V | |
| 52 | 50 10 51 | fvmpt | ⊢ ( 𝐵 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 53 | 48 52 | syl | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 54 | 47 53 | breqtrrd | ⊢ ( 𝜑 → - 𝑈 < ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) |
| 55 | 39 54 | jca | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) < - 𝑈 ∧ - 𝑈 < ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) ) |
| 56 | 1 2 9 4 5 12 20 55 | ivth | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ) |
| 57 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 58 | 57 5 | sstrid | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 59 | 58 | sselda | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑐 ∈ 𝐷 ) |
| 60 | fveq2 | ⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑐 ) ) | |
| 61 | 60 | negeqd | ⊢ ( 𝑦 = 𝑐 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑐 ) ) |
| 62 | negex | ⊢ - ( 𝐹 ‘ 𝑐 ) ∈ V | |
| 63 | 61 10 62 | fvmpt | ⊢ ( 𝑐 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - ( 𝐹 ‘ 𝑐 ) ) |
| 64 | 59 63 | syl | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - ( 𝐹 ‘ 𝑐 ) ) |
| 65 | 64 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ↔ - ( 𝐹 ‘ 𝑐 ) = - 𝑈 ) ) |
| 66 | cncff | ⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → 𝐹 : 𝐷 ⟶ ℂ ) | |
| 67 | 6 66 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 68 | 67 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
| 69 | 59 68 | syldan | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
| 70 | 3 | recnd | ⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑈 ∈ ℂ ) |
| 72 | 69 71 | neg11ad | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( - ( 𝐹 ‘ 𝑐 ) = - 𝑈 ↔ ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 73 | 65 72 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ↔ ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 74 | 73 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ↔ ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 75 | 56 74 | mpbid | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |