This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 12-Jun-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pilem2.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 2 (,) 4 ) ) | |
| pilem2.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| pilem2.3 | ⊢ ( 𝜑 → ( sin ‘ 𝐴 ) = 0 ) | ||
| pilem2.4 | ⊢ ( 𝜑 → ( sin ‘ 𝐵 ) = 0 ) | ||
| Assertion | pilem2 | ⊢ ( 𝜑 → ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pilem2.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 2 (,) 4 ) ) | |
| 2 | pilem2.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | pilem2.3 | ⊢ ( 𝜑 → ( sin ‘ 𝐴 ) = 0 ) | |
| 4 | pilem2.4 | ⊢ ( 𝜑 → ( sin ‘ 𝐵 ) = 0 ) | |
| 5 | df-pi | ⊢ π = inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) | |
| 6 | inss1 | ⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ+ | |
| 7 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 8 | 6 7 | sstri | ⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ) |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | elinel1 | ⊢ ( 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 𝑦 ∈ ℝ+ ) | |
| 12 | 11 | rpge0d | ⊢ ( 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 0 ≤ 𝑦 ) |
| 13 | 12 | rgen | ⊢ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑦 |
| 14 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) | |
| 15 | 14 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑦 ) ) |
| 16 | 15 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) |
| 17 | 10 13 16 | mp2an | ⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) |
| 19 | 2re | ⊢ 2 ∈ ℝ | |
| 20 | 2 | rpred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 21 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐵 ) ∈ ℝ ) | |
| 22 | 19 20 21 | sylancr | ⊢ ( 𝜑 → ( 2 · 𝐵 ) ∈ ℝ ) |
| 23 | elioore | ⊢ ( 𝐴 ∈ ( 2 (,) 4 ) → 𝐴 ∈ ℝ ) | |
| 24 | 1 23 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 25 | 22 24 | resubcld | ⊢ ( 𝜑 → ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ℝ ) |
| 26 | 4re | ⊢ 4 ∈ ℝ | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 28 | eliooord | ⊢ ( 𝐴 ∈ ( 2 (,) 4 ) → ( 2 < 𝐴 ∧ 𝐴 < 4 ) ) | |
| 29 | 1 28 | syl | ⊢ ( 𝜑 → ( 2 < 𝐴 ∧ 𝐴 < 4 ) ) |
| 30 | 29 | simprd | ⊢ ( 𝜑 → 𝐴 < 4 ) |
| 31 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 32 | 19 | a1i | ⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 33 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 34 | 2pos | ⊢ 0 < 2 | |
| 35 | 34 | a1i | ⊢ ( 𝜑 → 0 < 2 ) |
| 36 | 29 | simpld | ⊢ ( 𝜑 → 2 < 𝐴 ) |
| 37 | 33 32 24 35 36 | lttrd | ⊢ ( 𝜑 → 0 < 𝐴 ) |
| 38 | 24 37 | elrpd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 39 | pilem1 | ⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) | |
| 40 | 38 3 39 | sylanbrc | ⊢ ( 𝜑 → 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 41 | 40 | ne0d | ⊢ ( 𝜑 → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ) |
| 42 | infrecl | ⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) | |
| 43 | 8 17 42 | mp3an13 | ⊢ ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 44 | 41 43 | syl | ⊢ ( 𝜑 → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 45 | pilem1 | ⊢ ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝑥 ∈ ℝ+ ∧ ( sin ‘ 𝑥 ) = 0 ) ) | |
| 46 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 48 | letric | ⊢ ( ( 2 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 2 ≤ 𝑥 ∨ 𝑥 ≤ 2 ) ) | |
| 49 | 19 47 48 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 2 ≤ 𝑥 ∨ 𝑥 ≤ 2 ) ) |
| 50 | 49 | ord | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ¬ 2 ≤ 𝑥 → 𝑥 ≤ 2 ) ) |
| 51 | 46 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 𝑥 ∈ ℝ ) |
| 52 | rpgt0 | ⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) | |
| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 0 < 𝑥 ) |
| 54 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 𝑥 ≤ 2 ) | |
| 55 | 0xr | ⊢ 0 ∈ ℝ* | |
| 56 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 𝑥 ∈ ( 0 (,] 2 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 ≤ 2 ) ) ) | |
| 57 | 55 19 56 | mp2an | ⊢ ( 𝑥 ∈ ( 0 (,] 2 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 ≤ 2 ) ) |
| 58 | 51 53 54 57 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 𝑥 ∈ ( 0 (,] 2 ) ) |
| 59 | sin02gt0 | ⊢ ( 𝑥 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝑥 ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 0 < ( sin ‘ 𝑥 ) ) |
| 61 | 60 | gt0ne0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → ( sin ‘ 𝑥 ) ≠ 0 ) |
| 62 | 61 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ≤ 2 → ( sin ‘ 𝑥 ) ≠ 0 ) ) |
| 63 | 50 62 | syld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ¬ 2 ≤ 𝑥 → ( sin ‘ 𝑥 ) ≠ 0 ) ) |
| 64 | 63 | necon4bd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( sin ‘ 𝑥 ) = 0 → 2 ≤ 𝑥 ) ) |
| 65 | 64 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ∧ ( sin ‘ 𝑥 ) = 0 ) → 2 ≤ 𝑥 ) ) |
| 66 | 45 65 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 2 ≤ 𝑥 ) ) |
| 67 | 66 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 2 ≤ 𝑥 ) |
| 68 | infregelb | ⊢ ( ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) ∧ 2 ∈ ℝ ) → ( 2 ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 2 ≤ 𝑥 ) ) | |
| 69 | 9 41 18 32 68 | syl31anc | ⊢ ( 𝜑 → ( 2 ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 2 ≤ 𝑥 ) ) |
| 70 | 67 69 | mpbird | ⊢ ( 𝜑 → 2 ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ) |
| 71 | pilem1 | ⊢ ( 𝐵 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐵 ∈ ℝ+ ∧ ( sin ‘ 𝐵 ) = 0 ) ) | |
| 72 | 2 4 71 | sylanbrc | ⊢ ( 𝜑 → 𝐵 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 73 | infrelb | ⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ∧ 𝐵 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝐵 ) | |
| 74 | 9 18 72 73 | syl3anc | ⊢ ( 𝜑 → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝐵 ) |
| 75 | 32 44 20 70 74 | letrd | ⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
| 76 | 19 34 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 77 | 76 | a1i | ⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 78 | lemul2 | ⊢ ( ( 2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 2 ≤ 𝐵 ↔ ( 2 · 2 ) ≤ ( 2 · 𝐵 ) ) ) | |
| 79 | 32 20 77 78 | syl3anc | ⊢ ( 𝜑 → ( 2 ≤ 𝐵 ↔ ( 2 · 2 ) ≤ ( 2 · 𝐵 ) ) ) |
| 80 | 75 79 | mpbid | ⊢ ( 𝜑 → ( 2 · 2 ) ≤ ( 2 · 𝐵 ) ) |
| 81 | 31 80 | eqbrtrrid | ⊢ ( 𝜑 → 4 ≤ ( 2 · 𝐵 ) ) |
| 82 | 24 27 22 30 81 | ltletrd | ⊢ ( 𝜑 → 𝐴 < ( 2 · 𝐵 ) ) |
| 83 | 24 22 | posdifd | ⊢ ( 𝜑 → ( 𝐴 < ( 2 · 𝐵 ) ↔ 0 < ( ( 2 · 𝐵 ) − 𝐴 ) ) ) |
| 84 | 82 83 | mpbid | ⊢ ( 𝜑 → 0 < ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 85 | 25 84 | elrpd | ⊢ ( 𝜑 → ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ℝ+ ) |
| 86 | 22 | recnd | ⊢ ( 𝜑 → ( 2 · 𝐵 ) ∈ ℂ ) |
| 87 | 24 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 88 | sinsub | ⊢ ( ( ( 2 · 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) ) | |
| 89 | 86 87 88 | syl2anc | ⊢ ( 𝜑 → ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 90 | 20 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 91 | sin2t | ⊢ ( 𝐵 ∈ ℂ → ( sin ‘ ( 2 · 𝐵 ) ) = ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) ) | |
| 92 | 90 91 | syl | ⊢ ( 𝜑 → ( sin ‘ ( 2 · 𝐵 ) ) = ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 93 | 4 | oveq1d | ⊢ ( 𝜑 → ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) = ( 0 · ( cos ‘ 𝐵 ) ) ) |
| 94 | 90 | coscld | ⊢ ( 𝜑 → ( cos ‘ 𝐵 ) ∈ ℂ ) |
| 95 | 94 | mul02d | ⊢ ( 𝜑 → ( 0 · ( cos ‘ 𝐵 ) ) = 0 ) |
| 96 | 93 95 | eqtrd | ⊢ ( 𝜑 → ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) = 0 ) |
| 97 | 96 | oveq2d | ⊢ ( 𝜑 → ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) = ( 2 · 0 ) ) |
| 98 | 2t0e0 | ⊢ ( 2 · 0 ) = 0 | |
| 99 | 97 98 | eqtrdi | ⊢ ( 𝜑 → ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) = 0 ) |
| 100 | 92 99 | eqtrd | ⊢ ( 𝜑 → ( sin ‘ ( 2 · 𝐵 ) ) = 0 ) |
| 101 | 100 | oveq1d | ⊢ ( 𝜑 → ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) = ( 0 · ( cos ‘ 𝐴 ) ) ) |
| 102 | 87 | coscld | ⊢ ( 𝜑 → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 103 | 102 | mul02d | ⊢ ( 𝜑 → ( 0 · ( cos ‘ 𝐴 ) ) = 0 ) |
| 104 | 101 103 | eqtrd | ⊢ ( 𝜑 → ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) = 0 ) |
| 105 | 3 | oveq2d | ⊢ ( 𝜑 → ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) = ( ( cos ‘ ( 2 · 𝐵 ) ) · 0 ) ) |
| 106 | 86 | coscld | ⊢ ( 𝜑 → ( cos ‘ ( 2 · 𝐵 ) ) ∈ ℂ ) |
| 107 | 106 | mul01d | ⊢ ( 𝜑 → ( ( cos ‘ ( 2 · 𝐵 ) ) · 0 ) = 0 ) |
| 108 | 105 107 | eqtrd | ⊢ ( 𝜑 → ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) = 0 ) |
| 109 | 104 108 | oveq12d | ⊢ ( 𝜑 → ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) = ( 0 − 0 ) ) |
| 110 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 111 | 109 110 | eqtrdi | ⊢ ( 𝜑 → ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) = 0 ) |
| 112 | 89 111 | eqtrd | ⊢ ( 𝜑 → ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = 0 ) |
| 113 | pilem1 | ⊢ ( ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ℝ+ ∧ ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = 0 ) ) | |
| 114 | 85 112 113 | sylanbrc | ⊢ ( 𝜑 → ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 115 | infrelb | ⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ∧ ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) | |
| 116 | 9 18 114 115 | syl3anc | ⊢ ( 𝜑 → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 117 | 5 116 | eqbrtrid | ⊢ ( 𝜑 → π ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 118 | 5 44 | eqeltrid | ⊢ ( 𝜑 → π ∈ ℝ ) |
| 119 | leaddsub | ⊢ ( ( π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 2 · 𝐵 ) ∈ ℝ ) → ( ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ↔ π ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) ) | |
| 120 | 118 24 22 119 | syl3anc | ⊢ ( 𝜑 → ( ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ↔ π ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) ) |
| 121 | 117 120 | mpbird | ⊢ ( 𝜑 → ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ) |
| 122 | 118 24 | readdcld | ⊢ ( 𝜑 → ( π + 𝐴 ) ∈ ℝ ) |
| 123 | ledivmul | ⊢ ( ( ( π + 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ↔ ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ) ) | |
| 124 | 122 20 77 123 | syl3anc | ⊢ ( 𝜑 → ( ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ↔ ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ) ) |
| 125 | 121 124 | mpbird | ⊢ ( 𝜑 → ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ) |