This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group is a P -group if every element has some power of P as its order. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ispgp.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ispgp.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | ispgp | ⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispgp.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ispgp.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | simpr | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) | |
| 4 | 3 | fveq2d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 5 | 4 1 | eqtr4di | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 6 | 3 | fveq2d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( od ‘ 𝑔 ) = ( od ‘ 𝐺 ) ) |
| 7 | 6 2 | eqtr4di | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( od ‘ 𝑔 ) = 𝑂 ) |
| 8 | 7 | fveq1d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑂 ‘ 𝑥 ) ) |
| 9 | simpl | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → 𝑝 = 𝑃 ) | |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( 𝑝 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ↔ ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 13 | 5 12 | raleqbidv | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 14 | df-pgp | ⊢ pGrp = { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } | |
| 15 | 13 14 | brab2a | ⊢ ( 𝑃 pGrp 𝐺 ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 16 | df-3an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) | |
| 17 | 15 16 | bitr4i | ⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |