This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite group with order a power of a prime P is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi1.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | pgpfi1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) → 𝑃 pGrp 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi1.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → 𝑃 ∈ ℙ ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → 𝐺 ∈ Grp ) | |
| 4 | simpll3 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 ∈ ℕ0 ) | |
| 5 | 3 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 6 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) | |
| 7 | 2 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑃 ∈ ℙ ) |
| 8 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑃 ∈ ℕ ) |
| 10 | 9 4 | nnexpcld | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 11 | 10 | nnnn0d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ0 ) |
| 12 | 6 11 | eqeltrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 13 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 14 | hashclb | ⊢ ( 𝑋 ∈ V → ( 𝑋 ∈ Fin ↔ ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 𝑋 ∈ Fin ↔ ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 16 | 12 15 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
| 17 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 18 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 19 | 1 18 | oddvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 20 | 5 16 17 19 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 21 | 20 6 | breqtrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑁 ) ) |
| 22 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑁 ) ) | |
| 23 | 22 | breq2d | ⊢ ( 𝑛 = 𝑁 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
| 24 | 23 | rspcev | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 25 | 4 21 24 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 26 | 1 18 | odcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 27 | 5 16 17 26 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 28 | pcprmpw2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | |
| 29 | pcprmpw | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | |
| 30 | 28 29 | bitr4d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 31 | 7 27 30 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 32 | 25 31 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 34 | 1 18 | ispgp | ⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 35 | 2 3 33 34 | syl3anbrc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → 𝑃 pGrp 𝐺 ) |
| 36 | 35 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) → 𝑃 pGrp 𝐺 ) ) |