This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime P contains an element of order P . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcau.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcau.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | odcau | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcau.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcau.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝐺 ∈ Grp ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑋 ∈ Fin ) | |
| 5 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∈ ℙ ) | |
| 6 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 7 | 6 | a1i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 1 ∈ ℕ0 ) |
| 8 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 9 | 5 8 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∈ ℕ ) |
| 10 | 9 | nncnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∈ ℂ ) |
| 11 | 10 | exp1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 12 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) | |
| 13 | 11 12 | eqbrtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 1 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 14 | 1 3 4 5 7 13 | sylow1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) ) |
| 15 | 11 | eqeq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) ↔ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) ↔ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) |
| 17 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 18 | hashsng | ⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 |
| 20 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ♯ ‘ 𝑠 ) = 𝑃 ) | |
| 21 | 5 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑃 ∈ ℙ ) |
| 22 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 24 | 20 23 | eqeltrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 25 | eluz2gt1 | ⊢ ( ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 2 ) → 1 < ( ♯ ‘ 𝑠 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 1 < ( ♯ ‘ 𝑠 ) ) |
| 27 | 19 26 | eqbrtrid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) < ( ♯ ‘ 𝑠 ) ) |
| 28 | snfi | ⊢ { ( 0g ‘ 𝐺 ) } ∈ Fin | |
| 29 | 4 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑋 ∈ Fin ) |
| 30 | 1 | subgss | ⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → 𝑠 ⊆ 𝑋 ) |
| 31 | 30 | ad2antrl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑠 ⊆ 𝑋 ) |
| 32 | 29 31 | ssfid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑠 ∈ Fin ) |
| 33 | hashsdom | ⊢ ( ( { ( 0g ‘ 𝐺 ) } ∈ Fin ∧ 𝑠 ∈ Fin ) → ( ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) < ( ♯ ‘ 𝑠 ) ↔ { ( 0g ‘ 𝐺 ) } ≺ 𝑠 ) ) | |
| 34 | 28 32 33 | sylancr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) < ( ♯ ‘ 𝑠 ) ↔ { ( 0g ‘ 𝐺 ) } ≺ 𝑠 ) ) |
| 35 | 27 34 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → { ( 0g ‘ 𝐺 ) } ≺ 𝑠 ) |
| 36 | sdomdif | ⊢ ( { ( 0g ‘ 𝐺 ) } ≺ 𝑠 → ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ≠ ∅ ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ≠ ∅ ) |
| 38 | n0 | ⊢ ( ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ∃ 𝑔 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ) |
| 40 | eldifsn | ⊢ ( 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ↔ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) | |
| 41 | 31 | adantrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑠 ⊆ 𝑋 ) |
| 42 | simprrl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑔 ∈ 𝑠 ) | |
| 43 | 41 42 | sseldd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑔 ∈ 𝑋 ) |
| 44 | simprrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑔 ≠ ( 0g ‘ 𝐺 ) ) | |
| 45 | simprll | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 46 | 32 | adantrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑠 ∈ Fin ) |
| 47 | 2 | odsubdvds | ⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ Fin ∧ 𝑔 ∈ 𝑠 ) → ( 𝑂 ‘ 𝑔 ) ∥ ( ♯ ‘ 𝑠 ) ) |
| 48 | 45 46 42 47 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) ∥ ( ♯ ‘ 𝑠 ) ) |
| 49 | simprlr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ♯ ‘ 𝑠 ) = 𝑃 ) | |
| 50 | 48 49 | breqtrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) ∥ 𝑃 ) |
| 51 | 3 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝐺 ∈ Grp ) |
| 52 | 4 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑋 ∈ Fin ) |
| 53 | 1 2 | odcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑔 ) ∈ ℕ ) |
| 54 | 51 52 43 53 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) ∈ ℕ ) |
| 55 | dvdsprime | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑂 ‘ 𝑔 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝑔 ) ∥ 𝑃 ↔ ( ( 𝑂 ‘ 𝑔 ) = 𝑃 ∨ ( 𝑂 ‘ 𝑔 ) = 1 ) ) ) | |
| 56 | 5 54 55 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ( 𝑂 ‘ 𝑔 ) ∥ 𝑃 ↔ ( ( 𝑂 ‘ 𝑔 ) = 𝑃 ∨ ( 𝑂 ‘ 𝑔 ) = 1 ) ) ) |
| 57 | 50 56 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ( 𝑂 ‘ 𝑔 ) = 𝑃 ∨ ( 𝑂 ‘ 𝑔 ) = 1 ) ) |
| 58 | 57 | ord | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ¬ ( 𝑂 ‘ 𝑔 ) = 𝑃 → ( 𝑂 ‘ 𝑔 ) = 1 ) ) |
| 59 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 60 | 2 59 1 | odeq1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝑔 ) = 1 ↔ 𝑔 = ( 0g ‘ 𝐺 ) ) ) |
| 61 | 3 43 60 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ( 𝑂 ‘ 𝑔 ) = 1 ↔ 𝑔 = ( 0g ‘ 𝐺 ) ) ) |
| 62 | 58 61 | sylibd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ¬ ( 𝑂 ‘ 𝑔 ) = 𝑃 → 𝑔 = ( 0g ‘ 𝐺 ) ) ) |
| 63 | 62 | necon1ad | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑔 ≠ ( 0g ‘ 𝐺 ) → ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 64 | 44 63 | mpd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |
| 65 | 43 64 | jca | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 66 | 65 | expr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) ) |
| 67 | 40 66 | biimtrid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) ) |
| 68 | 67 | eximdv | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ∃ 𝑔 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) → ∃ 𝑔 ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) ) |
| 69 | 39 68 | mpd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ∃ 𝑔 ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 70 | df-rex | ⊢ ( ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) | |
| 71 | 69 70 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |
| 72 | 71 | expr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑠 ) = 𝑃 → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 73 | 16 72 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 74 | 73 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( ∃ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 75 | 14 74 | mpd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |