This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | ⊢ ( 𝐴 ∈ ℤ ↔ ( 𝐴 ∈ ℕ0 ∨ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) ) | |
| 2 | pcidlem | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) | |
| 3 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 𝑃 ∈ ℕ ) |
| 5 | 4 | nncnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 𝑃 ∈ ℂ ) |
| 6 | simprl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 𝐴 ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) |
| 8 | nnnn0 | ⊢ ( - 𝐴 ∈ ℕ → - 𝐴 ∈ ℕ0 ) | |
| 9 | 8 | ad2antll | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → - 𝐴 ∈ ℕ0 ) |
| 10 | expneg2 | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) = ( 1 / ( 𝑃 ↑ - 𝐴 ) ) ) | |
| 11 | 5 7 9 10 | syl3anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 ↑ 𝐴 ) = ( 1 / ( 𝑃 ↑ - 𝐴 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = ( 𝑃 pCnt ( 1 / ( 𝑃 ↑ - 𝐴 ) ) ) ) |
| 13 | simpl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 𝑃 ∈ ℙ ) | |
| 14 | 1zzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 1 ∈ ℤ ) | |
| 15 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 16 | 15 | a1i | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → 1 ≠ 0 ) |
| 17 | 4 9 | nnexpcld | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 ↑ - 𝐴 ) ∈ ℕ ) |
| 18 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 1 ∈ ℤ ∧ 1 ≠ 0 ) ∧ ( 𝑃 ↑ - 𝐴 ) ∈ ℕ ) → ( 𝑃 pCnt ( 1 / ( 𝑃 ↑ - 𝐴 ) ) ) = ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt ( 𝑃 ↑ - 𝐴 ) ) ) ) | |
| 19 | 13 14 16 17 18 | syl121anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 pCnt ( 1 / ( 𝑃 ↑ - 𝐴 ) ) ) = ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt ( 𝑃 ↑ - 𝐴 ) ) ) ) |
| 20 | pc1 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 pCnt 1 ) = 0 ) |
| 22 | pcidlem | ⊢ ( ( 𝑃 ∈ ℙ ∧ - 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ - 𝐴 ) ) = - 𝐴 ) | |
| 23 | 9 22 | syldan | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 pCnt ( 𝑃 ↑ - 𝐴 ) ) = - 𝐴 ) |
| 24 | 21 23 | oveq12d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt ( 𝑃 ↑ - 𝐴 ) ) ) = ( 0 − - 𝐴 ) ) |
| 25 | df-neg | ⊢ - - 𝐴 = ( 0 − - 𝐴 ) | |
| 26 | 7 | negnegd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → - - 𝐴 = 𝐴 ) |
| 27 | 25 26 | eqtr3id | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 0 − - 𝐴 ) = 𝐴 ) |
| 28 | 24 27 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt ( 𝑃 ↑ - 𝐴 ) ) ) = 𝐴 ) |
| 29 | 19 28 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 pCnt ( 1 / ( 𝑃 ↑ - 𝐴 ) ) ) = 𝐴 ) |
| 30 | 12 29 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| 31 | 2 30 | jaodan | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℕ0 ∨ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| 32 | 1 31 | sylan2b | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |