This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcprmpw | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → 𝑃 ∈ ℤ ) |
| 3 | zexpcl | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) | |
| 4 | 2 3 | sylan | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
| 5 | iddvds | ⊢ ( ( 𝑃 ↑ 𝑛 ) ∈ ℤ → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑛 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 7 | breq1 | ⊢ ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) | |
| 8 | 6 7 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 9 | 8 | reximdva | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 10 | pcprmpw2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) | |
| 11 | 9 10 | sylibd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 12 | pccl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 13 | oveq2 | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 14 | 13 | rspceeqv | ⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ∧ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
| 15 | 14 | ex | ⊢ ( ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 → ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 16 | 12 15 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 17 | 11 16 | impbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |