This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovoliunnul | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 | ⊢ ( 𝐴 = ∅ → ∪ 𝑛 ∈ 𝐴 𝐵 = ∪ 𝑛 ∈ ∅ 𝐵 ) | |
| 2 | 0iun | ⊢ ∪ 𝑛 ∈ ∅ 𝐵 = ∅ | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∪ 𝑛 ∈ 𝐴 𝐵 = ∅ ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = ( vol* ‘ ∅ ) ) |
| 5 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
| 8 | reldom | ⊢ Rel ≼ | |
| 9 | 8 | brrelex1i | ⊢ ( 𝐴 ≼ ℕ → 𝐴 ∈ V ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → 𝐴 ∈ V ) |
| 11 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 13 | fodomr | ⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) | |
| 14 | 13 | expcom | ⊢ ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) ) |
| 16 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝐴 𝐵 ↔ ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 17 | nfv | ⊢ Ⅎ 𝑛 𝑓 : ℕ –onto→ 𝐴 | |
| 18 | nfcv | ⊢ Ⅎ 𝑛 ℕ | |
| 19 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 | |
| 20 | 18 19 | nfiun | ⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
| 21 | 20 | nfcri | ⊢ Ⅎ 𝑛 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
| 22 | foelrn | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) | |
| 23 | 22 | ex | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑛 ∈ 𝐴 → ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) ) |
| 24 | csbeq1a | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 26 | 25 | eleq2d | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 27 | 26 | biimpd | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 28 | 27 | impancom | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 29 | 28 | reximdv | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 30 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) | |
| 31 | 29 30 | imbitrrdi | ⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 32 | 31 | ex | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑥 ∈ 𝐵 → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
| 33 | 32 | com23 | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
| 34 | 23 33 | syld | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑛 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
| 35 | 17 21 34 | rexlimd | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 36 | 16 35 | biimtrid | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝐴 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 37 | 36 | ssrdv | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ 𝐴 𝐵 ⊆ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∪ 𝑛 ∈ 𝐴 𝐵 ⊆ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 39 | fof | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → 𝑓 : ℕ ⟶ 𝐴 ) | |
| 40 | 39 | adantl | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 𝑓 : ℕ ⟶ 𝐴 ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 ) |
| 42 | simpllr | ⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) | |
| 43 | nfcv | ⊢ Ⅎ 𝑛 ℝ | |
| 44 | 19 43 | nfss | ⊢ Ⅎ 𝑛 ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ |
| 45 | nfcv | ⊢ Ⅎ 𝑛 vol* | |
| 46 | 45 19 | nffv | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 47 | 46 | nfeq1 | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 |
| 48 | 44 47 | nfan | ⊢ Ⅎ 𝑛 ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
| 49 | 24 | sseq1d | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( 𝐵 ⊆ ℝ ↔ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) ) |
| 50 | 24 | fveqeq2d | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( ( vol* ‘ 𝐵 ) = 0 ↔ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) |
| 51 | 49 50 | anbi12d | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ↔ ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) ) |
| 52 | 48 51 | rspc | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 → ( ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) ) |
| 53 | 41 42 52 | sylc | ⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) |
| 54 | 53 | simpld | ⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
| 55 | 54 | ralrimiva | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∀ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
| 56 | iunss | ⊢ ( ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ↔ ∀ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) | |
| 57 | 55 56 | sylibr | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
| 58 | eqid | ⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) | |
| 59 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) = ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) | |
| 60 | 53 | simprd | ⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
| 61 | 0re | ⊢ 0 ∈ ℝ | |
| 62 | 60 61 | eqeltrdi | ⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ ) |
| 63 | 60 | mpteq2dva | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) = ( 𝑘 ∈ ℕ ↦ 0 ) ) |
| 64 | fconstmpt | ⊢ ( ℕ × { 0 } ) = ( 𝑘 ∈ ℕ ↦ 0 ) | |
| 65 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 66 | 65 | xpeq1i | ⊢ ( ℕ × { 0 } ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
| 67 | 64 66 | eqtr3i | ⊢ ( 𝑘 ∈ ℕ ↦ 0 ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
| 68 | 63 67 | eqtrdi | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) |
| 69 | 68 | seqeq3d | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) = seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) |
| 70 | 1z | ⊢ 1 ∈ ℤ | |
| 71 | serclim0 | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) | |
| 72 | seqex | ⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ∈ V | |
| 73 | c0ex | ⊢ 0 ∈ V | |
| 74 | 72 73 | breldm | ⊢ ( seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ∈ dom ⇝ ) |
| 75 | 70 71 74 | mp2b | ⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ∈ dom ⇝ |
| 76 | 69 75 | eqeltrdi | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) ∈ dom ⇝ ) |
| 77 | 58 59 54 62 76 | ovoliun2 | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ Σ 𝑘 ∈ ℕ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 78 | 60 | sumeq2dv | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → Σ 𝑘 ∈ ℕ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = Σ 𝑘 ∈ ℕ 0 ) |
| 79 | 65 | eqimssi | ⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 80 | 79 | orci | ⊢ ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) |
| 81 | sumz | ⊢ ( ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑘 ∈ ℕ 0 = 0 ) | |
| 82 | 80 81 | ax-mp | ⊢ Σ 𝑘 ∈ ℕ 0 = 0 |
| 83 | 78 82 | eqtrdi | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → Σ 𝑘 ∈ ℕ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
| 84 | 77 83 | breqtrd | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ 0 ) |
| 85 | ovolge0 | ⊢ ( ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) | |
| 86 | 57 85 | syl | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 87 | ovolcl | ⊢ ( ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ* ) | |
| 88 | 57 87 | syl | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ* ) |
| 89 | 0xr | ⊢ 0 ∈ ℝ* | |
| 90 | xrletri3 | ⊢ ( ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ↔ ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) ) | |
| 91 | 88 89 90 | sylancl | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ↔ ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) ) |
| 92 | 84 86 91 | mpbir2and | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
| 93 | ovolssnul | ⊢ ( ( ∪ 𝑛 ∈ 𝐴 𝐵 ⊆ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∧ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) | |
| 94 | 38 57 92 93 | syl3anc | ⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |
| 95 | 94 | ex | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝑓 : ℕ –onto→ 𝐴 → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
| 96 | 95 | exlimdv | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
| 97 | 15 96 | syld | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
| 98 | 12 97 | sylbird | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝐴 ≠ ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
| 99 | 7 98 | pm2.61dne | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |