This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a shift of A by C , then A is a shift of B by -u C . (Contributed by Mario Carneiro, 22-Mar-2014) (Revised by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ovolshft.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| ovolshft.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) | ||
| Assertion | shft2rab | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( 𝑦 − - 𝐶 ) ∈ 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ovolshft.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | ovolshft.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) | |
| 4 | 1 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
| 5 | 4 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 6 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 7 | 2 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 8 | subneg | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑦 − - 𝐶 ) = ( 𝑦 + 𝐶 ) ) | |
| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 − - 𝐶 ) = ( 𝑦 + 𝐶 ) ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) |
| 11 | 9 10 | eleq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 − - 𝐶 ) ∈ 𝐵 ↔ ( 𝑦 + 𝐶 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) ) |
| 12 | id | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ ) | |
| 13 | readdcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑦 + 𝐶 ) ∈ ℝ ) | |
| 14 | 12 2 13 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + 𝐶 ) ∈ ℝ ) |
| 15 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 𝐶 ) → ( 𝑥 − 𝐶 ) = ( ( 𝑦 + 𝐶 ) − 𝐶 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 𝐶 ) → ( ( 𝑥 − 𝐶 ) ∈ 𝐴 ↔ ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ) ) |
| 17 | 16 | elrab3 | ⊢ ( ( 𝑦 + 𝐶 ) ∈ ℝ → ( ( 𝑦 + 𝐶 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ↔ ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ) ) |
| 18 | 14 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 𝐶 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ↔ ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ) ) |
| 19 | pncan | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝑦 + 𝐶 ) − 𝐶 ) = 𝑦 ) | |
| 20 | 6 7 19 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 𝐶 ) − 𝐶 ) = 𝑦 ) |
| 21 | 20 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 22 | 11 18 21 | 3bitrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 − - 𝐶 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴 ) ) |
| 23 | 22 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 24 | 5 23 | bitr4d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) ) ) |
| 25 | 24 | eqabdv | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) } ) |
| 26 | df-rab | ⊢ { 𝑦 ∈ ℝ ∣ ( 𝑦 − - 𝐶 ) ∈ 𝐵 } = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) } | |
| 27 | 25 26 | eqtr4di | ⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( 𝑦 − - 𝐶 ) ∈ 𝐵 } ) |