This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovoliunnul | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( vol* ` U_ n e. A B ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 | |- ( A = (/) -> U_ n e. A B = U_ n e. (/) B ) |
|
| 2 | 0iun | |- U_ n e. (/) B = (/) |
|
| 3 | 1 2 | eqtrdi | |- ( A = (/) -> U_ n e. A B = (/) ) |
| 4 | 3 | fveq2d | |- ( A = (/) -> ( vol* ` U_ n e. A B ) = ( vol* ` (/) ) ) |
| 5 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 6 | 4 5 | eqtrdi | |- ( A = (/) -> ( vol* ` U_ n e. A B ) = 0 ) |
| 7 | 6 | a1i | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( A = (/) -> ( vol* ` U_ n e. A B ) = 0 ) ) |
| 8 | reldom | |- Rel ~<_ |
|
| 9 | 8 | brrelex1i | |- ( A ~<_ NN -> A e. _V ) |
| 10 | 9 | adantr | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> A e. _V ) |
| 11 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 12 | 10 11 | syl | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( (/) ~< A <-> A =/= (/) ) ) |
| 13 | fodomr | |- ( ( (/) ~< A /\ A ~<_ NN ) -> E. f f : NN -onto-> A ) |
|
| 14 | 13 | expcom | |- ( A ~<_ NN -> ( (/) ~< A -> E. f f : NN -onto-> A ) ) |
| 15 | 14 | adantr | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( (/) ~< A -> E. f f : NN -onto-> A ) ) |
| 16 | eliun | |- ( x e. U_ n e. A B <-> E. n e. A x e. B ) |
|
| 17 | nfv | |- F/ n f : NN -onto-> A |
|
| 18 | nfcv | |- F/_ n NN |
|
| 19 | nfcsb1v | |- F/_ n [_ ( f ` k ) / n ]_ B |
|
| 20 | 18 19 | nfiun | |- F/_ n U_ k e. NN [_ ( f ` k ) / n ]_ B |
| 21 | 20 | nfcri | |- F/ n x e. U_ k e. NN [_ ( f ` k ) / n ]_ B |
| 22 | foelrn | |- ( ( f : NN -onto-> A /\ n e. A ) -> E. k e. NN n = ( f ` k ) ) |
|
| 23 | 22 | ex | |- ( f : NN -onto-> A -> ( n e. A -> E. k e. NN n = ( f ` k ) ) ) |
| 24 | csbeq1a | |- ( n = ( f ` k ) -> B = [_ ( f ` k ) / n ]_ B ) |
|
| 25 | 24 | adantl | |- ( ( f : NN -onto-> A /\ n = ( f ` k ) ) -> B = [_ ( f ` k ) / n ]_ B ) |
| 26 | 25 | eleq2d | |- ( ( f : NN -onto-> A /\ n = ( f ` k ) ) -> ( x e. B <-> x e. [_ ( f ` k ) / n ]_ B ) ) |
| 27 | 26 | biimpd | |- ( ( f : NN -onto-> A /\ n = ( f ` k ) ) -> ( x e. B -> x e. [_ ( f ` k ) / n ]_ B ) ) |
| 28 | 27 | impancom | |- ( ( f : NN -onto-> A /\ x e. B ) -> ( n = ( f ` k ) -> x e. [_ ( f ` k ) / n ]_ B ) ) |
| 29 | 28 | reximdv | |- ( ( f : NN -onto-> A /\ x e. B ) -> ( E. k e. NN n = ( f ` k ) -> E. k e. NN x e. [_ ( f ` k ) / n ]_ B ) ) |
| 30 | eliun | |- ( x e. U_ k e. NN [_ ( f ` k ) / n ]_ B <-> E. k e. NN x e. [_ ( f ` k ) / n ]_ B ) |
|
| 31 | 29 30 | imbitrrdi | |- ( ( f : NN -onto-> A /\ x e. B ) -> ( E. k e. NN n = ( f ` k ) -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) |
| 32 | 31 | ex | |- ( f : NN -onto-> A -> ( x e. B -> ( E. k e. NN n = ( f ` k ) -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) |
| 33 | 32 | com23 | |- ( f : NN -onto-> A -> ( E. k e. NN n = ( f ` k ) -> ( x e. B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) |
| 34 | 23 33 | syld | |- ( f : NN -onto-> A -> ( n e. A -> ( x e. B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) |
| 35 | 17 21 34 | rexlimd | |- ( f : NN -onto-> A -> ( E. n e. A x e. B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) |
| 36 | 16 35 | biimtrid | |- ( f : NN -onto-> A -> ( x e. U_ n e. A B -> x e. U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) |
| 37 | 36 | ssrdv | |- ( f : NN -onto-> A -> U_ n e. A B C_ U_ k e. NN [_ ( f ` k ) / n ]_ B ) |
| 38 | 37 | adantl | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> U_ n e. A B C_ U_ k e. NN [_ ( f ` k ) / n ]_ B ) |
| 39 | fof | |- ( f : NN -onto-> A -> f : NN --> A ) |
|
| 40 | 39 | adantl | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> f : NN --> A ) |
| 41 | 40 | ffvelcdmda | |- ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( f ` k ) e. A ) |
| 42 | simpllr | |- ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) |
|
| 43 | nfcv | |- F/_ n RR |
|
| 44 | 19 43 | nfss | |- F/ n [_ ( f ` k ) / n ]_ B C_ RR |
| 45 | nfcv | |- F/_ n vol* |
|
| 46 | 45 19 | nffv | |- F/_ n ( vol* ` [_ ( f ` k ) / n ]_ B ) |
| 47 | 46 | nfeq1 | |- F/ n ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 |
| 48 | 44 47 | nfan | |- F/ n ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) |
| 49 | 24 | sseq1d | |- ( n = ( f ` k ) -> ( B C_ RR <-> [_ ( f ` k ) / n ]_ B C_ RR ) ) |
| 50 | 24 | fveqeq2d | |- ( n = ( f ` k ) -> ( ( vol* ` B ) = 0 <-> ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) |
| 51 | 49 50 | anbi12d | |- ( n = ( f ` k ) -> ( ( B C_ RR /\ ( vol* ` B ) = 0 ) <-> ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) ) |
| 52 | 48 51 | rspc | |- ( ( f ` k ) e. A -> ( A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) -> ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) ) |
| 53 | 41 42 52 | sylc | |- ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) ) |
| 54 | 53 | simpld | |- ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> [_ ( f ` k ) / n ]_ B C_ RR ) |
| 55 | 54 | ralrimiva | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> A. k e. NN [_ ( f ` k ) / n ]_ B C_ RR ) |
| 56 | iunss | |- ( U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR <-> A. k e. NN [_ ( f ` k ) / n ]_ B C_ RR ) |
|
| 57 | 55 56 | sylibr | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR ) |
| 58 | eqid | |- seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) |
|
| 59 | eqid | |- ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) = ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) |
|
| 60 | 53 | simprd | |- ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) |
| 61 | 0re | |- 0 e. RR |
|
| 62 | 60 61 | eqeltrdi | |- ( ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) /\ k e. NN ) -> ( vol* ` [_ ( f ` k ) / n ]_ B ) e. RR ) |
| 63 | 60 | mpteq2dva | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) = ( k e. NN |-> 0 ) ) |
| 64 | fconstmpt | |- ( NN X. { 0 } ) = ( k e. NN |-> 0 ) |
|
| 65 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 66 | 65 | xpeq1i | |- ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
| 67 | 64 66 | eqtr3i | |- ( k e. NN |-> 0 ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
| 68 | 63 67 | eqtrdi | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) = ( ( ZZ>= ` 1 ) X. { 0 } ) ) |
| 69 | 68 | seqeq3d | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) = seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) |
| 70 | 1z | |- 1 e. ZZ |
|
| 71 | serclim0 | |- ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) |
|
| 72 | seqex | |- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) e. _V |
|
| 73 | c0ex | |- 0 e. _V |
|
| 74 | 72 73 | breldm | |- ( seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) e. dom ~~> ) |
| 75 | 70 71 74 | mp2b | |- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) e. dom ~~> |
| 76 | 69 75 | eqeltrdi | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> seq 1 ( + , ( k e. NN |-> ( vol* ` [_ ( f ` k ) / n ]_ B ) ) ) e. dom ~~> ) |
| 77 | 58 59 54 62 76 | ovoliun2 | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ sum_ k e. NN ( vol* ` [_ ( f ` k ) / n ]_ B ) ) |
| 78 | 60 | sumeq2dv | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> sum_ k e. NN ( vol* ` [_ ( f ` k ) / n ]_ B ) = sum_ k e. NN 0 ) |
| 79 | 65 | eqimssi | |- NN C_ ( ZZ>= ` 1 ) |
| 80 | 79 | orci | |- ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) |
| 81 | sumz | |- ( ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) -> sum_ k e. NN 0 = 0 ) |
|
| 82 | 80 81 | ax-mp | |- sum_ k e. NN 0 = 0 |
| 83 | 78 82 | eqtrdi | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> sum_ k e. NN ( vol* ` [_ ( f ` k ) / n ]_ B ) = 0 ) |
| 84 | 77 83 | breqtrd | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ 0 ) |
| 85 | ovolge0 | |- ( U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR -> 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) |
|
| 86 | 57 85 | syl | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) |
| 87 | ovolcl | |- ( U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) e. RR* ) |
|
| 88 | 57 87 | syl | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) e. RR* ) |
| 89 | 0xr | |- 0 e. RR* |
|
| 90 | xrletri3 | |- ( ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 <-> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ 0 /\ 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) ) |
|
| 91 | 88 89 90 | sylancl | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 <-> ( ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) <_ 0 /\ 0 <_ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) ) ) ) |
| 92 | 84 86 91 | mpbir2and | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 ) |
| 93 | ovolssnul | |- ( ( U_ n e. A B C_ U_ k e. NN [_ ( f ` k ) / n ]_ B /\ U_ k e. NN [_ ( f ` k ) / n ]_ B C_ RR /\ ( vol* ` U_ k e. NN [_ ( f ` k ) / n ]_ B ) = 0 ) -> ( vol* ` U_ n e. A B ) = 0 ) |
|
| 94 | 38 57 92 93 | syl3anc | |- ( ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) /\ f : NN -onto-> A ) -> ( vol* ` U_ n e. A B ) = 0 ) |
| 95 | 94 | ex | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( f : NN -onto-> A -> ( vol* ` U_ n e. A B ) = 0 ) ) |
| 96 | 95 | exlimdv | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( E. f f : NN -onto-> A -> ( vol* ` U_ n e. A B ) = 0 ) ) |
| 97 | 15 96 | syld | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( (/) ~< A -> ( vol* ` U_ n e. A B ) = 0 ) ) |
| 98 | 12 97 | sylbird | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( A =/= (/) -> ( vol* ` U_ n e. A B ) = 0 ) ) |
| 99 | 7 98 | pm2.61dne | |- ( ( A ~<_ NN /\ A. n e. A ( B C_ RR /\ ( vol* ` B ) = 0 ) ) -> ( vol* ` U_ n e. A B ) = 0 ) |