This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set M of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elovolm.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| Assertion | elovolm | ⊢ ( 𝐵 ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolm.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 2 | eqeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 4 | 3 | rexbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 5 | 4 1 | elrab2 | ⊢ ( 𝐵 ∈ 𝑀 ↔ ( 𝐵 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 6 | elovolmlem | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 7 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 ) | |
| 8 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 9 | 7 8 | ovolsf | ⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 10 | 6 9 | sylbi | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 11 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 12 | fss | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ* ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ℝ* ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ℝ* ) |
| 14 | frn | ⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ℝ* → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) | |
| 15 | supxrcl | ⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 17 | eleq1 | ⊢ ( 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵 ∈ ℝ* ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) ) | |
| 18 | 16 17 | syl5ibrcom | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → 𝐵 ∈ ℝ* ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 𝐵 ∈ ℝ* ) |
| 20 | 19 | adantrl | ⊢ ( ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) → 𝐵 ∈ ℝ* ) |
| 21 | 20 | rexlimiva | ⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 𝐵 ∈ ℝ* ) |
| 22 | 21 | pm4.71ri | ⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( 𝐵 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 23 | 5 22 | bitr4i | ⊢ ( 𝐵 ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |