This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovolval.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| Assertion | ovolval | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolval.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 2 | reex | ⊢ ℝ ∈ V | |
| 3 | 2 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ ) |
| 4 | cleq1lem | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 6 | 5 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ) |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = 𝑀 ) |
| 8 | 7 | infeq1d | ⊢ ( 𝑥 = 𝐴 → inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) ) |
| 9 | df-ovol | ⊢ vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) | |
| 10 | xrltso | ⊢ < Or ℝ* | |
| 11 | 10 | infex | ⊢ inf ( 𝑀 , ℝ* , < ) ∈ V |
| 12 | 8 9 11 | fvmpt | ⊢ ( 𝐴 ∈ 𝒫 ℝ → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
| 13 | 3 12 | sylbir | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |