This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolctb | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( ℕ ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐴 ) | |
| 2 | simpll | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 3 | f1of | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴 → 𝑓 : ℕ ⟶ 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 : ℕ ⟶ 𝐴 ) |
| 5 | 4 | ffvelcdmda | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) |
| 6 | 2 5 | sseldd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 7 | 6 | leidd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 8 | df-br | ⊢ ( ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ↔ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ≤ ) | |
| 9 | 7 8 | sylib | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ≤ ) |
| 10 | 6 6 | opelxpd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ( ℝ × ℝ ) ) |
| 11 | 9 10 | elind | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 12 | df-ov | ⊢ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) = ( I ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) | |
| 13 | opex | ⊢ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ V | |
| 14 | fvi | ⊢ ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ V → ( I ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) | |
| 15 | 13 14 | ax-mp | ⊢ ( I ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 |
| 16 | 12 15 | eqtri | ⊢ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 |
| 17 | 16 | mpteq2i | ⊢ ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
| 18 | 11 17 | fmptd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 19 | nnex | ⊢ ℕ ∈ V | |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ℕ ∈ V ) |
| 21 | 6 | recnd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 22 | 4 | feqmptd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 = ( 𝑥 ∈ ℕ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 23 | 20 21 21 22 22 | offval2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑓 ∘f I 𝑓 ) = ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 24 | 23 | feq1d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ↔ ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |
| 25 | 18 24 | mpbird | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 26 | f1ofo | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴 → 𝑓 : ℕ –onto→ 𝐴 ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 : ℕ –onto→ 𝐴 ) |
| 28 | forn | ⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ran 𝑓 = 𝐴 ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ran 𝑓 = 𝐴 ) |
| 30 | 29 | eleq2d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ 𝐴 ) ) |
| 31 | f1ofn | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴 → 𝑓 Fn ℕ ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 Fn ℕ ) |
| 33 | fvelrnb | ⊢ ( 𝑓 Fn ℕ → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
| 35 | 30 34 | bitr3d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
| 36 | 23 17 | eqtrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑓 ∘f I 𝑓 ) = ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
| 37 | 36 | fveq1d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) ) |
| 38 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) | |
| 39 | 38 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℕ ∧ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ V ) → ( ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
| 40 | 13 39 | mpan2 | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
| 41 | 37 40 | sylan9eq | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
| 42 | 41 | fveq2d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 1st ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
| 43 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 44 | 43 43 | op1st | ⊢ ( 1st ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = ( 𝑓 ‘ 𝑥 ) |
| 45 | 42 44 | eqtrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
| 46 | 45 7 | eqbrtrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 47 | 41 | fveq2d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 2nd ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
| 48 | 43 43 | op2nd | ⊢ ( 2nd ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = ( 𝑓 ‘ 𝑥 ) |
| 49 | 47 48 | eqtrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
| 50 | 7 49 | breqtrrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) |
| 51 | 46 50 | jca | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) |
| 52 | breq2 | ⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ↔ ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ) ) | |
| 53 | breq1 | ⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ↔ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) | |
| 54 | 52 53 | anbi12d | ⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 55 | 51 54 | syl5ibcom | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 56 | 55 | reximdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 57 | 35 56 | sylbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ 𝐴 → ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 58 | 57 | ralrimiv | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) |
| 59 | ovolficc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) | |
| 60 | 25 59 | syldan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 61 | 58 60 | mpbird | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ) |
| 62 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) | |
| 63 | 62 | ovollb2 | ⊢ ( ( ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) ) |
| 64 | 25 61 63 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) ) |
| 65 | 21 21 | opelxpd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ( ℂ × ℂ ) ) |
| 66 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 67 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 68 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 69 | 66 67 68 | mp2an | ⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 70 | 69 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
| 71 | 70 | feqmptd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( abs ∘ − ) = ( 𝑦 ∈ ( ℂ × ℂ ) ↦ ( ( abs ∘ − ) ‘ 𝑦 ) ) ) |
| 72 | fveq2 | ⊢ ( 𝑦 = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 → ( ( abs ∘ − ) ‘ 𝑦 ) = ( ( abs ∘ − ) ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) | |
| 73 | df-ov | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) = ( ( abs ∘ − ) ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) | |
| 74 | 72 73 | eqtr4di | ⊢ ( 𝑦 = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 → ( ( abs ∘ − ) ‘ 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) ) |
| 75 | 65 36 71 74 | fmptco | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) = ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 76 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 77 | met0 | ⊢ ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) = 0 ) | |
| 78 | 76 21 77 | sylancr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
| 79 | 78 | mpteq2dva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ 0 ) ) |
| 80 | 75 79 | eqtrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) = ( 𝑥 ∈ ℕ ↦ 0 ) ) |
| 81 | fconstmpt | ⊢ ( ℕ × { 0 } ) = ( 𝑥 ∈ ℕ ↦ 0 ) | |
| 82 | 80 81 | eqtr4di | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) = ( ℕ × { 0 } ) ) |
| 83 | 82 | seqeq3d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = seq 1 ( + , ( ℕ × { 0 } ) ) ) |
| 84 | 1z | ⊢ 1 ∈ ℤ | |
| 85 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 86 | 85 | ser0f | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 0 } ) ) = ( ℕ × { 0 } ) ) |
| 87 | 84 86 | ax-mp | ⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = ( ℕ × { 0 } ) |
| 88 | 83 87 | eqtrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = ( ℕ × { 0 } ) ) |
| 89 | 88 | rneqd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = ran ( ℕ × { 0 } ) ) |
| 90 | 1nn | ⊢ 1 ∈ ℕ | |
| 91 | ne0i | ⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) | |
| 92 | rnxp | ⊢ ( ℕ ≠ ∅ → ran ( ℕ × { 0 } ) = { 0 } ) | |
| 93 | 90 91 92 | mp2b | ⊢ ran ( ℕ × { 0 } ) = { 0 } |
| 94 | 89 93 | eqtrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = { 0 } ) |
| 95 | 94 | supeq1d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
| 96 | xrltso | ⊢ < Or ℝ* | |
| 97 | 0xr | ⊢ 0 ∈ ℝ* | |
| 98 | supsn | ⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) | |
| 99 | 96 97 98 | mp2an | ⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 100 | 95 99 | eqtrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) = 0 ) |
| 101 | 64 100 | breqtrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) ≤ 0 ) |
| 102 | ovolge0 | ⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) | |
| 103 | 102 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
| 104 | ovolcl | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) | |
| 105 | 104 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 106 | xrletri3 | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) | |
| 107 | 105 97 106 | sylancl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) |
| 108 | 101 103 107 | mpbir2and | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) = 0 ) |
| 109 | 108 | ex | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑓 : ℕ –1-1-onto→ 𝐴 → ( vol* ‘ 𝐴 ) = 0 ) ) |
| 110 | 109 | exlimdv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐴 → ( vol* ‘ 𝐴 ) = 0 ) ) |
| 111 | 1 110 | biimtrid | ⊢ ( 𝐴 ⊆ ℝ → ( ℕ ≈ 𝐴 → ( vol* ‘ 𝐴 ) = 0 ) ) |
| 112 | ensym | ⊢ ( 𝐴 ≈ ℕ → ℕ ≈ 𝐴 ) | |
| 113 | 111 112 | impel | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) |