This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolctb | |- ( ( A C_ RR /\ A ~~ NN ) -> ( vol* ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | |- ( NN ~~ A <-> E. f f : NN -1-1-onto-> A ) |
|
| 2 | simpll | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> A C_ RR ) |
|
| 3 | f1of | |- ( f : NN -1-1-onto-> A -> f : NN --> A ) |
|
| 4 | 3 | adantl | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f : NN --> A ) |
| 5 | 4 | ffvelcdmda | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. A ) |
| 6 | 2 5 | sseldd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. RR ) |
| 7 | 6 | leidd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) <_ ( f ` x ) ) |
| 8 | df-br | |- ( ( f ` x ) <_ ( f ` x ) <-> <. ( f ` x ) , ( f ` x ) >. e. <_ ) |
|
| 9 | 7 8 | sylib | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. <_ ) |
| 10 | 6 6 | opelxpd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( RR X. RR ) ) |
| 11 | 9 10 | elind | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 12 | df-ov | |- ( ( f ` x ) _I ( f ` x ) ) = ( _I ` <. ( f ` x ) , ( f ` x ) >. ) |
|
| 13 | opex | |- <. ( f ` x ) , ( f ` x ) >. e. _V |
|
| 14 | fvi | |- ( <. ( f ` x ) , ( f ` x ) >. e. _V -> ( _I ` <. ( f ` x ) , ( f ` x ) >. ) = <. ( f ` x ) , ( f ` x ) >. ) |
|
| 15 | 13 14 | ax-mp | |- ( _I ` <. ( f ` x ) , ( f ` x ) >. ) = <. ( f ` x ) , ( f ` x ) >. |
| 16 | 12 15 | eqtri | |- ( ( f ` x ) _I ( f ` x ) ) = <. ( f ` x ) , ( f ` x ) >. |
| 17 | 16 | mpteq2i | |- ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) |
| 18 | 11 17 | fmptd | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 19 | nnex | |- NN e. _V |
|
| 20 | 19 | a1i | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> NN e. _V ) |
| 21 | 6 | recnd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. CC ) |
| 22 | 4 | feqmptd | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f = ( x e. NN |-> ( f ` x ) ) ) |
| 23 | 20 21 21 22 22 | offval2 | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) = ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) ) |
| 24 | 23 | feq1d | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) <-> ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) ) |
| 25 | 18 24 | mpbird | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 26 | f1ofo | |- ( f : NN -1-1-onto-> A -> f : NN -onto-> A ) |
|
| 27 | 26 | adantl | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f : NN -onto-> A ) |
| 28 | forn | |- ( f : NN -onto-> A -> ran f = A ) |
|
| 29 | 27 28 | syl | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran f = A ) |
| 30 | 29 | eleq2d | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. ran f <-> y e. A ) ) |
| 31 | f1ofn | |- ( f : NN -1-1-onto-> A -> f Fn NN ) |
|
| 32 | 31 | adantl | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f Fn NN ) |
| 33 | fvelrnb | |- ( f Fn NN -> ( y e. ran f <-> E. x e. NN ( f ` x ) = y ) ) |
|
| 34 | 32 33 | syl | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. ran f <-> E. x e. NN ( f ` x ) = y ) ) |
| 35 | 30 34 | bitr3d | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. A <-> E. x e. NN ( f ` x ) = y ) ) |
| 36 | 23 17 | eqtrdi | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ) |
| 37 | 36 | fveq1d | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( f oF _I f ) ` x ) = ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) ) |
| 38 | eqid | |- ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) |
|
| 39 | 38 | fvmpt2 | |- ( ( x e. NN /\ <. ( f ` x ) , ( f ` x ) >. e. _V ) -> ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 40 | 13 39 | mpan2 | |- ( x e. NN -> ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 41 | 37 40 | sylan9eq | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f oF _I f ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 42 | 41 | fveq2d | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) = ( 1st ` <. ( f ` x ) , ( f ` x ) >. ) ) |
| 43 | fvex | |- ( f ` x ) e. _V |
|
| 44 | 43 43 | op1st | |- ( 1st ` <. ( f ` x ) , ( f ` x ) >. ) = ( f ` x ) |
| 45 | 42 44 | eqtrdi | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) = ( f ` x ) ) |
| 46 | 45 7 | eqbrtrd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) ) |
| 47 | 41 | fveq2d | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 2nd ` ( ( f oF _I f ) ` x ) ) = ( 2nd ` <. ( f ` x ) , ( f ` x ) >. ) ) |
| 48 | 43 43 | op2nd | |- ( 2nd ` <. ( f ` x ) , ( f ` x ) >. ) = ( f ` x ) |
| 49 | 47 48 | eqtrdi | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 2nd ` ( ( f oF _I f ) ` x ) ) = ( f ` x ) ) |
| 50 | 7 49 | breqtrrd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) |
| 51 | 46 50 | jca | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) /\ ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) |
| 52 | breq2 | |- ( ( f ` x ) = y -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) <-> ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y ) ) |
|
| 53 | breq1 | |- ( ( f ` x ) = y -> ( ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) <-> y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) |
|
| 54 | 52 53 | anbi12d | |- ( ( f ` x ) = y -> ( ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) /\ ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) <-> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 55 | 51 54 | syl5ibcom | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f ` x ) = y -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 56 | 55 | reximdva | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( E. x e. NN ( f ` x ) = y -> E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 57 | 35 56 | sylbid | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. A -> E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 58 | 57 | ralrimiv | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) |
| 59 | ovolficc | |- ( ( A C_ RR /\ ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( [,] o. ( f oF _I f ) ) <-> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
|
| 60 | 25 59 | syldan | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( A C_ U. ran ( [,] o. ( f oF _I f ) ) <-> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 61 | 58 60 | mpbird | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> A C_ U. ran ( [,] o. ( f oF _I f ) ) ) |
| 62 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) |
|
| 63 | 62 | ovollb2 | |- ( ( ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. ( f oF _I f ) ) ) -> ( vol* ` A ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) ) |
| 64 | 25 61 63 | syl2anc | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) ) |
| 65 | 21 21 | opelxpd | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( CC X. CC ) ) |
| 66 | absf | |- abs : CC --> RR |
|
| 67 | subf | |- - : ( CC X. CC ) --> CC |
|
| 68 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 69 | 66 67 68 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 70 | 69 | a1i | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
| 71 | 70 | feqmptd | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( abs o. - ) = ( y e. ( CC X. CC ) |-> ( ( abs o. - ) ` y ) ) ) |
| 72 | fveq2 | |- ( y = <. ( f ` x ) , ( f ` x ) >. -> ( ( abs o. - ) ` y ) = ( ( abs o. - ) ` <. ( f ` x ) , ( f ` x ) >. ) ) |
|
| 73 | df-ov | |- ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = ( ( abs o. - ) ` <. ( f ` x ) , ( f ` x ) >. ) |
|
| 74 | 72 73 | eqtr4di | |- ( y = <. ( f ` x ) , ( f ` x ) >. -> ( ( abs o. - ) ` y ) = ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) |
| 75 | 65 36 71 74 | fmptco | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( x e. NN |-> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) ) |
| 76 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 77 | met0 | |- ( ( ( abs o. - ) e. ( Met ` CC ) /\ ( f ` x ) e. CC ) -> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = 0 ) |
|
| 78 | 76 21 77 | sylancr | |- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = 0 ) |
| 79 | 78 | mpteq2dva | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( x e. NN |-> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) = ( x e. NN |-> 0 ) ) |
| 80 | 75 79 | eqtrd | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( x e. NN |-> 0 ) ) |
| 81 | fconstmpt | |- ( NN X. { 0 } ) = ( x e. NN |-> 0 ) |
|
| 82 | 80 81 | eqtr4di | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( NN X. { 0 } ) ) |
| 83 | 82 | seqeq3d | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = seq 1 ( + , ( NN X. { 0 } ) ) ) |
| 84 | 1z | |- 1 e. ZZ |
|
| 85 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 86 | 85 | ser0f | |- ( 1 e. ZZ -> seq 1 ( + , ( NN X. { 0 } ) ) = ( NN X. { 0 } ) ) |
| 87 | 84 86 | ax-mp | |- seq 1 ( + , ( NN X. { 0 } ) ) = ( NN X. { 0 } ) |
| 88 | 83 87 | eqtrdi | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = ( NN X. { 0 } ) ) |
| 89 | 88 | rneqd | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = ran ( NN X. { 0 } ) ) |
| 90 | 1nn | |- 1 e. NN |
|
| 91 | ne0i | |- ( 1 e. NN -> NN =/= (/) ) |
|
| 92 | rnxp | |- ( NN =/= (/) -> ran ( NN X. { 0 } ) = { 0 } ) |
|
| 93 | 90 91 92 | mp2b | |- ran ( NN X. { 0 } ) = { 0 } |
| 94 | 89 93 | eqtrdi | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = { 0 } ) |
| 95 | 94 | supeq1d | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) ) |
| 96 | xrltso | |- < Or RR* |
|
| 97 | 0xr | |- 0 e. RR* |
|
| 98 | supsn | |- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
|
| 99 | 96 97 98 | mp2an | |- sup ( { 0 } , RR* , < ) = 0 |
| 100 | 95 99 | eqtrdi | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) = 0 ) |
| 101 | 64 100 | breqtrd | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) <_ 0 ) |
| 102 | ovolge0 | |- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
|
| 103 | 102 | adantr | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> 0 <_ ( vol* ` A ) ) |
| 104 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 105 | 104 | adantr | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) e. RR* ) |
| 106 | xrletri3 | |- ( ( ( vol* ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
|
| 107 | 105 97 106 | sylancl | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
| 108 | 101 103 107 | mpbir2and | |- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) = 0 ) |
| 109 | 108 | ex | |- ( A C_ RR -> ( f : NN -1-1-onto-> A -> ( vol* ` A ) = 0 ) ) |
| 110 | 109 | exlimdv | |- ( A C_ RR -> ( E. f f : NN -1-1-onto-> A -> ( vol* ` A ) = 0 ) ) |
| 111 | 1 110 | biimtrid | |- ( A C_ RR -> ( NN ~~ A -> ( vol* ` A ) = 0 ) ) |
| 112 | ensym | |- ( A ~~ NN -> NN ~~ A ) |
|
| 113 | 111 112 | impel | |- ( ( A C_ RR /\ A ~~ NN ) -> ( vol* ` A ) = 0 ) |