This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 3 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 4 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 6 | subcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) | |
| 7 | 6 | abs00ad | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 8 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 9 | 8 | cnmetdval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( 𝑥 ( abs ∘ − ) 𝑦 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) = 0 ↔ ( 𝑥 ( abs ∘ − ) 𝑦 ) = 0 ) ) |
| 12 | subeq0 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 − 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) | |
| 13 | 7 11 12 | 3bitr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ( abs ∘ − ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 14 | abs3dif | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( abs ‘ ( 𝑥 − 𝑧 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) | |
| 15 | abssub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑧 ) ) = ( abs ‘ ( 𝑧 − 𝑥 ) ) ) | |
| 16 | 15 | oveq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 − 𝑧 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) = ( ( abs ‘ ( 𝑧 − 𝑥 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 − 𝑧 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) = ( ( abs ‘ ( 𝑧 − 𝑥 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) |
| 18 | 14 17 | breqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( abs ‘ ( 𝑧 − 𝑥 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) |
| 19 | 9 | 3adant3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 20 | 8 | cnmetdval | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 𝑥 ) = ( abs ‘ ( 𝑧 − 𝑥 ) ) ) |
| 21 | 20 | 3adant3 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 𝑥 ) = ( abs ‘ ( 𝑧 − 𝑥 ) ) ) |
| 22 | 8 | cnmetdval | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 23 | 22 | 3adant2 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 24 | 21 23 | oveq12d | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑧 ( abs ∘ − ) 𝑥 ) + ( 𝑧 ( abs ∘ − ) 𝑦 ) ) = ( ( abs ‘ ( 𝑧 − 𝑥 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) |
| 25 | 24 | 3coml | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑧 ( abs ∘ − ) 𝑥 ) + ( 𝑧 ( abs ∘ − ) 𝑦 ) ) = ( ( abs ‘ ( 𝑧 − 𝑥 ) ) + ( abs ‘ ( 𝑧 − 𝑦 ) ) ) ) |
| 26 | 18 19 25 | 3brtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) ≤ ( ( 𝑧 ( abs ∘ − ) 𝑥 ) + ( 𝑧 ( abs ∘ − ) 𝑦 ) ) ) |
| 27 | 1 5 13 26 | ismeti | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |