This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ser0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | ser0f | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) = ( 𝑍 × { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ser0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | 1 | ser0 | ⊢ ( 𝑘 ∈ 𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑘 ) = 0 ) |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 5 | 2 4 | eqtr4d | ⊢ ( 𝑘 ∈ 𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑘 ) = ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) ) |
| 6 | 5 | rgen | ⊢ ∀ 𝑘 ∈ 𝑍 ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑘 ) = ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) |
| 7 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 1 | fneq2i | ⊢ ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) Fn 𝑍 ↔ seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | 7 8 | sylibr | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) Fn 𝑍 ) |
| 10 | 3 | fconst | ⊢ ( 𝑍 × { 0 } ) : 𝑍 ⟶ { 0 } |
| 11 | ffn | ⊢ ( ( 𝑍 × { 0 } ) : 𝑍 ⟶ { 0 } → ( 𝑍 × { 0 } ) Fn 𝑍 ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 𝑍 × { 0 } ) Fn 𝑍 |
| 13 | eqfnfv | ⊢ ( ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) Fn 𝑍 ∧ ( 𝑍 × { 0 } ) Fn 𝑍 ) → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) = ( 𝑍 × { 0 } ) ↔ ∀ 𝑘 ∈ 𝑍 ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑘 ) = ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) ) ) | |
| 14 | 9 12 13 | sylancl | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) = ( 𝑍 × { 0 } ) ↔ ∀ 𝑘 ∈ 𝑍 ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑘 ) = ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) ) ) |
| 15 | 6 14 | mpbiri | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) = ( 𝑍 × { 0 } ) ) |