This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | ||
| opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | ||
| opsrtoslem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| opsrtoslem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| opsrtoslem.q | ⊢ < = ( lt ‘ 𝑅 ) | ||
| opsrtoslem.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | ||
| opsrtoslem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| opsrtoslem.ps | ⊢ ( 𝜓 ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) | ||
| opsrtoslem.l | ⊢ ≤ = ( le ‘ 𝑂 ) | ||
| Assertion | opsrtoslem2 | ⊢ ( 𝜑 → 𝑂 ∈ Toset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 2 | opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | |
| 4 | opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 5 | opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | |
| 6 | opsrtoslem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 7 | opsrtoslem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 8 | opsrtoslem.q | ⊢ < = ( lt ‘ 𝑅 ) | |
| 9 | opsrtoslem.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| 10 | opsrtoslem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 11 | opsrtoslem.ps | ⊢ ( 𝜓 ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) | |
| 12 | opsrtoslem.l | ⊢ ≤ = ( le ‘ 𝑂 ) | |
| 13 | 2 2 | xpexd | ⊢ ( 𝜑 → ( 𝐼 × 𝐼 ) ∈ V ) |
| 14 | 13 4 | ssexd | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 15 | 9 10 2 14 5 | ltbwe | ⊢ ( 𝜑 → 𝐶 We 𝐷 ) |
| 16 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 17 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 18 | 16 17 8 | tosso | ⊢ ( 𝑅 ∈ Toset → ( 𝑅 ∈ Toset ↔ ( < Or ( Base ‘ 𝑅 ) ∧ ( I ↾ ( Base ‘ 𝑅 ) ) ⊆ ( le ‘ 𝑅 ) ) ) ) |
| 19 | 18 | ibi | ⊢ ( 𝑅 ∈ Toset → ( < Or ( Base ‘ 𝑅 ) ∧ ( I ↾ ( Base ‘ 𝑅 ) ) ⊆ ( le ‘ 𝑅 ) ) ) |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → ( < Or ( Base ‘ 𝑅 ) ∧ ( I ↾ ( Base ‘ 𝑅 ) ) ⊆ ( le ‘ 𝑅 ) ) ) |
| 21 | 20 | simpld | ⊢ ( 𝜑 → < Or ( Base ‘ 𝑅 ) ) |
| 22 | 11 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
| 23 | 22 | wemapso | ⊢ ( ( 𝐶 We 𝐷 ∧ < Or ( Base ‘ 𝑅 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 24 | 15 21 23 | syl2anc | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 25 | 6 16 10 7 2 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 26 | soeq2 | ⊢ ( 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) → ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or 𝐵 ↔ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or 𝐵 ↔ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) ) |
| 28 | 24 27 | mpbird | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or 𝐵 ) |
| 29 | soinxp | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } Or 𝐵 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) Or 𝐵 ) | |
| 30 | 28 29 | sylib | ⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) Or 𝐵 ) |
| 31 | 1 | fvexi | ⊢ 𝑂 ∈ V |
| 32 | eqid | ⊢ ( lt ‘ 𝑂 ) = ( lt ‘ 𝑂 ) | |
| 33 | 12 32 | pltfval | ⊢ ( 𝑂 ∈ V → ( lt ‘ 𝑂 ) = ( ≤ ∖ I ) ) |
| 34 | 31 33 | ax-mp | ⊢ ( lt ‘ 𝑂 ) = ( ≤ ∖ I ) |
| 35 | difundir | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ∖ I ) = ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) ∪ ( ( I ↾ 𝐵 ) ∖ I ) ) | |
| 36 | resss | ⊢ ( I ↾ 𝐵 ) ⊆ I | |
| 37 | ssdif0 | ⊢ ( ( I ↾ 𝐵 ) ⊆ I ↔ ( ( I ↾ 𝐵 ) ∖ I ) = ∅ ) | |
| 38 | 36 37 | mpbi | ⊢ ( ( I ↾ 𝐵 ) ∖ I ) = ∅ |
| 39 | 38 | uneq2i | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) ∪ ( ( I ↾ 𝐵 ) ∖ I ) ) = ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) ∪ ∅ ) |
| 40 | un0 | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) ∪ ∅ ) = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) | |
| 41 | 35 39 40 | 3eqtri | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ∖ I ) = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) |
| 42 | 1 2 3 4 5 6 7 8 9 10 11 12 | opsrtoslem1 | ⊢ ( 𝜑 → ≤ = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ) |
| 43 | 42 | difeq1d | ⊢ ( 𝜑 → ( ≤ ∖ I ) = ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ∖ I ) ) |
| 44 | relinxp | ⊢ Rel ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) | |
| 45 | 44 | a1i | ⊢ ( 𝜑 → Rel ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) |
| 46 | df-br | ⊢ ( 𝑎 I 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ I ) | |
| 47 | vex | ⊢ 𝑏 ∈ V | |
| 48 | 47 | ideq | ⊢ ( 𝑎 I 𝑏 ↔ 𝑎 = 𝑏 ) |
| 49 | 46 48 | bitr3i | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ I ↔ 𝑎 = 𝑏 ) |
| 50 | brin | ⊢ ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ↔ ( 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } 𝑎 ∧ 𝑎 ( 𝐵 × 𝐵 ) 𝑎 ) ) | |
| 51 | 50 | simprbi | ⊢ ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 → 𝑎 ( 𝐵 × 𝐵 ) 𝑎 ) |
| 52 | brxp | ⊢ ( 𝑎 ( 𝐵 × 𝐵 ) 𝑎 ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) | |
| 53 | 52 | simprbi | ⊢ ( 𝑎 ( 𝐵 × 𝐵 ) 𝑎 → 𝑎 ∈ 𝐵 ) |
| 54 | 51 53 | syl | ⊢ ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 → 𝑎 ∈ 𝐵 ) |
| 55 | sonr | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) Or 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ¬ 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ) | |
| 56 | 55 | ex | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) Or 𝐵 → ( 𝑎 ∈ 𝐵 → ¬ 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ) ) |
| 57 | 30 54 56 | syl2im | ⊢ ( 𝜑 → ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 → ¬ 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ) ) |
| 58 | 57 | pm2.01d | ⊢ ( 𝜑 → ¬ 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ) |
| 59 | breq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ↔ 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑏 ) ) | |
| 60 | df-br | ⊢ ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) | |
| 61 | 59 60 | bitrdi | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ↔ 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 62 | 61 | notbid | ⊢ ( 𝑎 = 𝑏 → ( ¬ 𝑎 ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) 𝑎 ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 63 | 58 62 | syl5ibcom | ⊢ ( 𝜑 → ( 𝑎 = 𝑏 → ¬ 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 64 | 49 63 | biimtrid | ⊢ ( 𝜑 → ( 〈 𝑎 , 𝑏 〉 ∈ I → ¬ 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 65 | 64 | con2d | ⊢ ( 𝜑 → ( 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) → ¬ 〈 𝑎 , 𝑏 〉 ∈ I ) ) |
| 66 | opex | ⊢ 〈 𝑎 , 𝑏 〉 ∈ V | |
| 67 | eldif | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( V ∖ I ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ V ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ I ) ) | |
| 68 | 66 67 | mpbiran | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( V ∖ I ) ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ I ) |
| 69 | 65 68 | imbitrrdi | ⊢ ( 𝜑 → ( 〈 𝑎 , 𝑏 〉 ∈ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) → 〈 𝑎 , 𝑏 〉 ∈ ( V ∖ I ) ) ) |
| 70 | 45 69 | relssdv | ⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( V ∖ I ) ) |
| 71 | disj2 | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∩ I ) = ∅ ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( V ∖ I ) ) | |
| 72 | 70 71 | sylibr | ⊢ ( 𝜑 → ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∩ I ) = ∅ ) |
| 73 | disj3 | ⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∩ I ) = ∅ ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) ) | |
| 74 | 72 73 | sylib | ⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∖ I ) ) |
| 75 | 41 43 74 | 3eqtr4a | ⊢ ( 𝜑 → ( ≤ ∖ I ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) |
| 76 | 34 75 | eqtrid | ⊢ ( 𝜑 → ( lt ‘ 𝑂 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ) |
| 77 | 6 1 4 | opsrbas | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑂 ) ) |
| 78 | 7 77 | eqtr2id | ⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = 𝐵 ) |
| 79 | 76 78 | soeq12d | ⊢ ( 𝜑 → ( ( lt ‘ 𝑂 ) Or ( Base ‘ 𝑂 ) ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) Or 𝐵 ) ) |
| 80 | 30 79 | mpbird | ⊢ ( 𝜑 → ( lt ‘ 𝑂 ) Or ( Base ‘ 𝑂 ) ) |
| 81 | 78 | reseq2d | ⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑂 ) ) = ( I ↾ 𝐵 ) ) |
| 82 | ssun2 | ⊢ ( I ↾ 𝐵 ) ⊆ ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) | |
| 83 | 81 82 | eqsstrdi | ⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑂 ) ) ⊆ ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ) |
| 84 | 83 42 | sseqtrrd | ⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑂 ) ) ⊆ ≤ ) |
| 85 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 86 | 85 12 32 | tosso | ⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ Toset ↔ ( ( lt ‘ 𝑂 ) Or ( Base ‘ 𝑂 ) ∧ ( I ↾ ( Base ‘ 𝑂 ) ) ⊆ ≤ ) ) ) |
| 87 | 31 86 | ax-mp | ⊢ ( 𝑂 ∈ Toset ↔ ( ( lt ‘ 𝑂 ) Or ( Base ‘ 𝑂 ) ∧ ( I ↾ ( Base ‘ 𝑂 ) ) ⊆ ≤ ) ) |
| 88 | 80 84 87 | sylanbrc | ⊢ ( 𝜑 → 𝑂 ∈ Toset ) |