This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | ||
| opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | ||
| opsrtoslem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| opsrtoslem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| opsrtoslem.q | ⊢ < = ( lt ‘ 𝑅 ) | ||
| opsrtoslem.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | ||
| opsrtoslem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| opsrtoslem.ps | ⊢ ( 𝜓 ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) | ||
| opsrtoslem.l | ⊢ ≤ = ( le ‘ 𝑂 ) | ||
| Assertion | opsrtoslem1 | ⊢ ( 𝜑 → ≤ = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 2 | opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | |
| 4 | opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 5 | opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | |
| 6 | opsrtoslem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 7 | opsrtoslem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 8 | opsrtoslem.q | ⊢ < = ( lt ‘ 𝑅 ) | |
| 9 | opsrtoslem.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| 10 | opsrtoslem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 11 | opsrtoslem.ps | ⊢ ( 𝜓 ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) | |
| 12 | opsrtoslem.l | ⊢ ≤ = ( le ‘ 𝑂 ) | |
| 13 | 6 1 7 8 9 10 12 4 | opsrle | ⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 14 | unopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) ∨ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) ) } | |
| 15 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜓 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) } | |
| 16 | df-xp | ⊢ ( 𝐵 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) } | |
| 17 | 16 | ineq2i | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) } ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 18 19 | prss | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 21 | 20 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) ) |
| 22 | ancom | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ↔ ( 𝜓 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 23 | 21 22 | bitr3i | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) ↔ ( 𝜓 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 24 | 23 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜓 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) } |
| 25 | 15 17 24 | 3eqtr4i | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) } |
| 26 | opabresid | ⊢ ( I ↾ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) } | |
| 27 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 28 | 27 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ) |
| 29 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 30 | 29 | biimpac | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 31 | 30 | pm4.71i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 32 | 28 31 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 33 | an32 | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = 𝑦 ) ) | |
| 34 | 20 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = 𝑦 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) ) |
| 35 | 32 33 34 | 3bitri | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) ) |
| 36 | 35 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) } |
| 37 | 26 36 | eqtri | ⊢ ( I ↾ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) } |
| 38 | 25 37 | uneq12i | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) } ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) } ) |
| 39 | 11 | orbi1i | ⊢ ( ( 𝜓 ∨ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) |
| 40 | 39 | anbi2i | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( 𝜓 ∨ 𝑥 = 𝑦 ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) |
| 41 | andi | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( 𝜓 ∨ 𝑥 = 𝑦 ) ) ↔ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) ∨ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) ) ) | |
| 42 | 40 41 | bitr3i | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ↔ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) ∨ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) ) ) |
| 43 | 42 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝜓 ) ∨ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ 𝑥 = 𝑦 ) ) } |
| 44 | 14 38 43 | 3eqtr4ri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) |
| 45 | 13 44 | eqtrdi | ⊢ ( 𝜑 → ≤ = ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ∩ ( 𝐵 × 𝐵 ) ) ∪ ( I ↾ 𝐵 ) ) ) |