This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| opsrso.i | |- ( ph -> I e. V ) |
||
| opsrso.r | |- ( ph -> R e. Toset ) |
||
| opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| opsrso.w | |- ( ph -> T We I ) |
||
| opsrtoslem.s | |- S = ( I mPwSer R ) |
||
| opsrtoslem.b | |- B = ( Base ` S ) |
||
| opsrtoslem.q | |- .< = ( lt ` R ) |
||
| opsrtoslem.c | |- C = ( T |
||
| opsrtoslem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| opsrtoslem.ps | |- ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) ) |
||
| opsrtoslem.l | |- .<_ = ( le ` O ) |
||
| Assertion | opsrtoslem2 | |- ( ph -> O e. Toset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 2 | opsrso.i | |- ( ph -> I e. V ) |
|
| 3 | opsrso.r | |- ( ph -> R e. Toset ) |
|
| 4 | opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 5 | opsrso.w | |- ( ph -> T We I ) |
|
| 6 | opsrtoslem.s | |- S = ( I mPwSer R ) |
|
| 7 | opsrtoslem.b | |- B = ( Base ` S ) |
|
| 8 | opsrtoslem.q | |- .< = ( lt ` R ) |
|
| 9 | opsrtoslem.c | |- C = ( T |
|
| 10 | opsrtoslem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 11 | opsrtoslem.ps | |- ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) ) |
|
| 12 | opsrtoslem.l | |- .<_ = ( le ` O ) |
|
| 13 | 2 2 | xpexd | |- ( ph -> ( I X. I ) e. _V ) |
| 14 | 13 4 | ssexd | |- ( ph -> T e. _V ) |
| 15 | 9 10 2 14 5 | ltbwe | |- ( ph -> C We D ) |
| 16 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 17 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 18 | 16 17 8 | tosso | |- ( R e. Toset -> ( R e. Toset <-> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) ) |
| 19 | 18 | ibi | |- ( R e. Toset -> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) |
| 20 | 3 19 | syl | |- ( ph -> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) |
| 21 | 20 | simpld | |- ( ph -> .< Or ( Base ` R ) ) |
| 22 | 11 | opabbii | |- { <. x , y >. | ps } = { <. x , y >. | E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) } |
| 23 | 22 | wemapso | |- ( ( C We D /\ .< Or ( Base ` R ) ) -> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) |
| 24 | 15 21 23 | syl2anc | |- ( ph -> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) |
| 25 | 6 16 10 7 2 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
| 26 | soeq2 | |- ( B = ( ( Base ` R ) ^m D ) -> ( { <. x , y >. | ps } Or B <-> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) ) |
|
| 27 | 25 26 | syl | |- ( ph -> ( { <. x , y >. | ps } Or B <-> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) ) |
| 28 | 24 27 | mpbird | |- ( ph -> { <. x , y >. | ps } Or B ) |
| 29 | soinxp | |- ( { <. x , y >. | ps } Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) |
|
| 30 | 28 29 | sylib | |- ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) |
| 31 | 1 | fvexi | |- O e. _V |
| 32 | eqid | |- ( lt ` O ) = ( lt ` O ) |
|
| 33 | 12 32 | pltfval | |- ( O e. _V -> ( lt ` O ) = ( .<_ \ _I ) ) |
| 34 | 31 33 | ax-mp | |- ( lt ` O ) = ( .<_ \ _I ) |
| 35 | difundir | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. ( ( _I |` B ) \ _I ) ) |
|
| 36 | resss | |- ( _I |` B ) C_ _I |
|
| 37 | ssdif0 | |- ( ( _I |` B ) C_ _I <-> ( ( _I |` B ) \ _I ) = (/) ) |
|
| 38 | 36 37 | mpbi | |- ( ( _I |` B ) \ _I ) = (/) |
| 39 | 38 | uneq2i | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. ( ( _I |` B ) \ _I ) ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. (/) ) |
| 40 | un0 | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. (/) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) |
|
| 41 | 35 39 40 | 3eqtri | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) |
| 42 | 1 2 3 4 5 6 7 8 9 10 11 12 | opsrtoslem1 | |- ( ph -> .<_ = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |
| 43 | 42 | difeq1d | |- ( ph -> ( .<_ \ _I ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) ) |
| 44 | relinxp | |- Rel ( { <. x , y >. | ps } i^i ( B X. B ) ) |
|
| 45 | 44 | a1i | |- ( ph -> Rel ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
| 46 | df-br | |- ( a _I b <-> <. a , b >. e. _I ) |
|
| 47 | vex | |- b e. _V |
|
| 48 | 47 | ideq | |- ( a _I b <-> a = b ) |
| 49 | 46 48 | bitr3i | |- ( <. a , b >. e. _I <-> a = b ) |
| 50 | brin | |- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> ( a { <. x , y >. | ps } a /\ a ( B X. B ) a ) ) |
|
| 51 | 50 | simprbi | |- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> a ( B X. B ) a ) |
| 52 | brxp | |- ( a ( B X. B ) a <-> ( a e. B /\ a e. B ) ) |
|
| 53 | 52 | simprbi | |- ( a ( B X. B ) a -> a e. B ) |
| 54 | 51 53 | syl | |- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> a e. B ) |
| 55 | sonr | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B /\ a e. B ) -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) |
|
| 56 | 55 | ex | |- ( ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B -> ( a e. B -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) ) |
| 57 | 30 54 56 | syl2im | |- ( ph -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) ) |
| 58 | 57 | pm2.01d | |- ( ph -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) |
| 59 | breq2 | |- ( a = b -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> a ( { <. x , y >. | ps } i^i ( B X. B ) ) b ) ) |
|
| 60 | df-br | |- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) b <-> <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
|
| 61 | 59 60 | bitrdi | |- ( a = b -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
| 62 | 61 | notbid | |- ( a = b -> ( -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
| 63 | 58 62 | syl5ibcom | |- ( ph -> ( a = b -> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
| 64 | 49 63 | biimtrid | |- ( ph -> ( <. a , b >. e. _I -> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
| 65 | 64 | con2d | |- ( ph -> ( <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) -> -. <. a , b >. e. _I ) ) |
| 66 | opex | |- <. a , b >. e. _V |
|
| 67 | eldif | |- ( <. a , b >. e. ( _V \ _I ) <-> ( <. a , b >. e. _V /\ -. <. a , b >. e. _I ) ) |
|
| 68 | 66 67 | mpbiran | |- ( <. a , b >. e. ( _V \ _I ) <-> -. <. a , b >. e. _I ) |
| 69 | 65 68 | imbitrrdi | |- ( ph -> ( <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) -> <. a , b >. e. ( _V \ _I ) ) ) |
| 70 | 45 69 | relssdv | |- ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) C_ ( _V \ _I ) ) |
| 71 | disj2 | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) C_ ( _V \ _I ) ) |
|
| 72 | 70 71 | sylibr | |- ( ph -> ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) ) |
| 73 | disj3 | |- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) ) |
|
| 74 | 72 73 | sylib | |- ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) ) |
| 75 | 41 43 74 | 3eqtr4a | |- ( ph -> ( .<_ \ _I ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
| 76 | 34 75 | eqtrid | |- ( ph -> ( lt ` O ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
| 77 | 6 1 4 | opsrbas | |- ( ph -> ( Base ` S ) = ( Base ` O ) ) |
| 78 | 7 77 | eqtr2id | |- ( ph -> ( Base ` O ) = B ) |
| 79 | 76 78 | soeq12d | |- ( ph -> ( ( lt ` O ) Or ( Base ` O ) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) ) |
| 80 | 30 79 | mpbird | |- ( ph -> ( lt ` O ) Or ( Base ` O ) ) |
| 81 | 78 | reseq2d | |- ( ph -> ( _I |` ( Base ` O ) ) = ( _I |` B ) ) |
| 82 | ssun2 | |- ( _I |` B ) C_ ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) |
|
| 83 | 81 82 | eqsstrdi | |- ( ph -> ( _I |` ( Base ` O ) ) C_ ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |
| 84 | 83 42 | sseqtrrd | |- ( ph -> ( _I |` ( Base ` O ) ) C_ .<_ ) |
| 85 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 86 | 85 12 32 | tosso | |- ( O e. _V -> ( O e. Toset <-> ( ( lt ` O ) Or ( Base ` O ) /\ ( _I |` ( Base ` O ) ) C_ .<_ ) ) ) |
| 87 | 31 86 | ax-mp | |- ( O e. Toset <-> ( ( lt ` O ) Or ( Base ` O ) /\ ( _I |` ( Base ` O ) ) C_ .<_ ) ) |
| 88 | 80 84 87 | sylanbrc | |- ( ph -> O e. Toset ) |