This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soinxp | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poinxp | ⊢ ( 𝑅 Po 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Po 𝐴 ) | |
| 2 | brinxp | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ) ) | |
| 3 | biidd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 4 | brinxp | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 6 | 2 3 5 | 3orbi123d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) ) |
| 7 | 6 | ralbidva | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) ) |
| 8 | 7 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 9 | 1 8 | anbi12i | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) ) |
| 10 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 11 | df-so | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) ) | |
| 12 | 9 10 11 | 3bitr4i | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 ) |