This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| Assertion | wemapso | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐵 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | ssid | ⊢ ( 𝐵 ↑m 𝐴 ) ⊆ ( 𝐵 ↑m 𝐴 ) | |
| 3 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑅 Or 𝐴 ) |
| 5 | simpr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑆 Or 𝐵 ) | |
| 6 | vex | ⊢ 𝑎 ∈ V | |
| 7 | 6 | difexi | ⊢ ( 𝑎 ∖ 𝑏 ) ∈ V |
| 8 | 7 | dmex | ⊢ dom ( 𝑎 ∖ 𝑏 ) ∈ V |
| 9 | 8 | a1i | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) ∈ V ) |
| 10 | wefr | ⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑅 Fr 𝐴 ) |
| 12 | difss | ⊢ ( 𝑎 ∖ 𝑏 ) ⊆ 𝑎 | |
| 13 | dmss | ⊢ ( ( 𝑎 ∖ 𝑏 ) ⊆ 𝑎 → dom ( 𝑎 ∖ 𝑏 ) ⊆ dom 𝑎 ) | |
| 14 | 12 13 | ax-mp | ⊢ dom ( 𝑎 ∖ 𝑏 ) ⊆ dom 𝑎 |
| 15 | simprll | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 16 | elmapi | ⊢ ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑎 : 𝐴 ⟶ 𝐵 ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 : 𝐴 ⟶ 𝐵 ) |
| 18 | 14 17 | fssdm | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) ⊆ 𝐴 ) |
| 19 | simprr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ≠ 𝑏 ) | |
| 20 | 17 | ffnd | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 Fn 𝐴 ) |
| 21 | simprlr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 22 | elmapi | ⊢ ( 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑏 : 𝐴 ⟶ 𝐵 ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 : 𝐴 ⟶ 𝐵 ) |
| 24 | 23 | ffnd | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 Fn 𝐴 ) |
| 25 | fndmdifeq0 | ⊢ ( ( 𝑎 Fn 𝐴 ∧ 𝑏 Fn 𝐴 ) → ( dom ( 𝑎 ∖ 𝑏 ) = ∅ ↔ 𝑎 = 𝑏 ) ) | |
| 26 | 20 24 25 | syl2anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → ( dom ( 𝑎 ∖ 𝑏 ) = ∅ ↔ 𝑎 = 𝑏 ) ) |
| 27 | 26 | necon3bid | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → ( dom ( 𝑎 ∖ 𝑏 ) ≠ ∅ ↔ 𝑎 ≠ 𝑏 ) ) |
| 28 | 19 27 | mpbird | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) ≠ ∅ ) |
| 29 | fri | ⊢ ( ( ( dom ( 𝑎 ∖ 𝑏 ) ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( dom ( 𝑎 ∖ 𝑏 ) ⊆ 𝐴 ∧ dom ( 𝑎 ∖ 𝑏 ) ≠ ∅ ) ) → ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) | |
| 30 | 9 11 18 28 29 | syl22anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) |
| 31 | 1 2 4 5 30 | wemapsolem | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐵 ↑m 𝐴 ) ) |