This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | ||
| opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | ||
| Assertion | opsrtos | ⊢ ( 𝜑 → 𝑂 ∈ Toset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 2 | opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | |
| 4 | opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 5 | opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | |
| 6 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 8 | eqid | ⊢ ( lt ‘ 𝑅 ) = ( lt ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( 𝑇 <bag 𝐼 ) = ( 𝑇 <bag 𝐼 ) | |
| 10 | eqid | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 11 | biid | ⊢ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) | |
| 12 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | opsrtoslem2 | ⊢ ( 𝜑 → 𝑂 ∈ Toset ) |