This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tosso.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| tosso.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| tosso.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | tosso | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tosso.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | tosso.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | tosso.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | 1 2 3 | pleval2 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
| 5 | 4 | 3expb | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
| 6 | 1 2 3 | pleval2 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 7 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 8 | 7 | orbi2i | ⊢ ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 9 | 6 8 | bitrdi | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 10 | 9 | 3com23 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 12 | 5 11 | orbi12d | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) ) |
| 13 | df-3or | ⊢ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ 𝑦 < 𝑥 ) ) | |
| 14 | or32 | ⊢ ( ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ 𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) | |
| 15 | orordir | ⊢ ( ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ 𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 17 | 13 16 | bitri | ⊢ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ∨ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 18 | 12 17 | bitr4di | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 19 | 18 | 2ralbidva | ⊢ ( 𝐾 ∈ Poset → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 20 | 19 | pm5.32i | ⊢ ( ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ↔ ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 21 | 1 2 3 | pospo | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) ) |
| 22 | 21 | anbi1d | ⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ↔ ( ( < Po 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) ) |
| 23 | 20 22 | bitrid | ⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ↔ ( ( < Po 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) ) |
| 24 | 1 2 | istos | ⊢ ( 𝐾 ∈ Toset ↔ ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 25 | df-so | ⊢ ( < Or 𝐵 ↔ ( < Po 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) | |
| 26 | 25 | anbi1i | ⊢ ( ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ↔ ( ( < Po 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) |
| 27 | an32 | ⊢ ( ( ( < Po 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ↔ ( ( < Po 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) | |
| 28 | 26 27 | bitri | ⊢ ( ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ↔ ( ( < Po 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 29 | 23 24 28 | 3bitr4g | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) ) |