This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltbval.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| ltbval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| ltbval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ltbval.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) | ||
| ltbwe.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | ||
| Assertion | ltbwe | ⊢ ( 𝜑 → 𝐶 We 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbval.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| 2 | ltbval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 3 | ltbval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | ltbval.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) | |
| 5 | ltbwe.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | |
| 6 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 7 | breq1 | ⊢ ( ℎ = 𝑥 → ( ℎ finSupp 0 ↔ 𝑥 finSupp 0 ) ) | |
| 8 | 7 | cbvrabv | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ 𝑥 finSupp 0 } |
| 9 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 10 | ltweuz | ⊢ < We ( ℤ≥ ‘ 0 ) | |
| 11 | weeq2 | ⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → ( < We ℕ0 ↔ < We ( ℤ≥ ‘ 0 ) ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → < We ℕ0 ) |
| 13 | 9 12 | mp1i | ⊢ ( 𝜑 → < We ℕ0 ) |
| 14 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 15 | ne0i | ⊢ ( 0 ∈ ℕ0 → ℕ0 ≠ ∅ ) | |
| 16 | 14 15 | mp1i | ⊢ ( 𝜑 → ℕ0 ≠ ∅ ) |
| 17 | eqid | ⊢ OrdIso ( 𝑇 , 𝐼 ) = OrdIso ( 𝑇 , 𝐼 ) | |
| 18 | 0z | ⊢ 0 ∈ ℤ | |
| 19 | hashgval2 | ⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 20 | 18 19 | om2uzoi | ⊢ ( ♯ ↾ ω ) = OrdIso ( < , ( ℤ≥ ‘ 0 ) ) |
| 21 | oieq2 | ⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → OrdIso ( < , ℕ0 ) = OrdIso ( < , ( ℤ≥ ‘ 0 ) ) ) | |
| 22 | 9 21 | ax-mp | ⊢ OrdIso ( < , ℕ0 ) = OrdIso ( < , ( ℤ≥ ‘ 0 ) ) |
| 23 | 20 22 | eqtr4i | ⊢ ( ♯ ↾ ω ) = OrdIso ( < , ℕ0 ) |
| 24 | peano1 | ⊢ ∅ ∈ ω | |
| 25 | fvres | ⊢ ( ∅ ∈ ω → ( ( ♯ ↾ ω ) ‘ ∅ ) = ( ♯ ‘ ∅ ) ) | |
| 26 | 24 25 | ax-mp | ⊢ ( ( ♯ ↾ ω ) ‘ ∅ ) = ( ♯ ‘ ∅ ) |
| 27 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 28 | 26 27 | eqtr2i | ⊢ 0 = ( ( ♯ ↾ ω ) ‘ ∅ ) |
| 29 | 6 8 5 13 16 17 23 28 | wemapwe | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 30 | elmapfun | ⊢ ( ℎ ∈ ( ℕ0 ↑m 𝐼 ) → Fun ℎ ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → Fun ℎ ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) | |
| 33 | c0ex | ⊢ 0 ∈ V | |
| 34 | 33 | a1i | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → 0 ∈ V ) |
| 35 | funisfsupp | ⊢ ( ( Fun ℎ ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∧ 0 ∈ V ) → ( ℎ finSupp 0 ↔ ( ℎ supp 0 ) ∈ Fin ) ) | |
| 36 | 31 32 34 35 | syl3anc | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ℎ finSupp 0 ↔ ( ℎ supp 0 ) ∈ Fin ) ) |
| 37 | elmapi | ⊢ ( ℎ ∈ ( ℕ0 ↑m 𝐼 ) → ℎ : 𝐼 ⟶ ℕ0 ) | |
| 38 | fcdmnn0supp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ℎ : 𝐼 ⟶ ℕ0 ) → ( ℎ supp 0 ) = ( ◡ ℎ “ ℕ ) ) | |
| 39 | 38 | eleq1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ℎ : 𝐼 ⟶ ℕ0 ) → ( ( ℎ supp 0 ) ∈ Fin ↔ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
| 40 | 3 37 39 | syl2an | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ( ℎ supp 0 ) ∈ Fin ↔ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
| 41 | 36 40 | bitr2d | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ( ◡ ℎ “ ℕ ) ∈ Fin ↔ ℎ finSupp 0 ) ) |
| 42 | 41 | rabbidva | ⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 43 | 2 42 | eqtrid | ⊢ ( 𝜑 → 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 44 | weeq2 | ⊢ ( 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 46 | 29 45 | mpbird | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ) |
| 47 | weinxp | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) | |
| 48 | 46 47 | sylib | ⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) |
| 49 | 1 2 3 4 | ltbval | ⊢ ( 𝜑 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 50 | df-xp | ⊢ ( 𝐷 × 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) } | |
| 51 | vex | ⊢ 𝑥 ∈ V | |
| 52 | vex | ⊢ 𝑦 ∈ V | |
| 53 | 51 52 | prss | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
| 54 | 53 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) } = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } |
| 55 | 50 54 | eqtr2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } = ( 𝐷 × 𝐷 ) |
| 56 | 55 | ineq1i | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) = ( ( 𝐷 × 𝐷 ) ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) |
| 57 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } | |
| 58 | incom | ⊢ ( ( 𝐷 × 𝐷 ) ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) | |
| 59 | 56 57 58 | 3eqtr3i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) |
| 60 | 49 59 | eqtrdi | ⊢ ( 𝜑 → 𝐶 = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) ) |
| 61 | weeq1 | ⊢ ( 𝐶 = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) → ( 𝐶 We 𝐷 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( 𝐶 We 𝐷 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) ) |
| 63 | 48 62 | mpbird | ⊢ ( 𝜑 → 𝐶 We 𝐷 ) |