This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018) (Proof shortened by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofldchr | ⊢ ( 𝐹 ∈ oField → ( chr ‘ 𝐹 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( od ‘ 𝐹 ) = ( od ‘ 𝐹 ) | |
| 2 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 3 | eqid | ⊢ ( chr ‘ 𝐹 ) = ( chr ‘ 𝐹 ) | |
| 4 | 1 2 3 | chrval | ⊢ ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = ( chr ‘ 𝐹 ) |
| 5 | ofldfld | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) | |
| 6 | isfld | ⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) | |
| 7 | 6 | simplbi | ⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
| 8 | drngring | ⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) | |
| 9 | 5 7 8 | 3syl | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Ring ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 11 | 10 2 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 12 | eqid | ⊢ ( .g ‘ 𝐹 ) = ( .g ‘ 𝐹 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 14 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } | |
| 15 | 10 12 13 1 14 | odval | ⊢ ( ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) ) |
| 16 | 9 11 15 | 3syl | ⊢ ( 𝐹 ∈ oField → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) | |
| 18 | 17 | breq2d | ⊢ ( 𝑛 = 1 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑛 = 1 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) | |
| 21 | 20 | breq2d | ⊢ ( 𝑛 = 𝑚 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 23 | oveq1 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) | |
| 24 | 23 | breq2d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 26 | oveq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) | |
| 27 | 26 | breq2d | ⊢ ( 𝑛 = 𝑦 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 29 | eqid | ⊢ ( lt ‘ 𝐹 ) = ( lt ‘ 𝐹 ) | |
| 30 | 13 2 29 | ofldlt1 | ⊢ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) |
| 31 | 9 11 | syl | ⊢ ( 𝐹 ∈ oField → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 32 | 10 12 | mulg1 | ⊢ ( ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 33 | 31 32 | syl | ⊢ ( 𝐹 ∈ oField → ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 34 | 30 33 | breqtrrd | ⊢ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 35 | ofldtos | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Toset ) | |
| 36 | tospos | ⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) | |
| 37 | 35 36 | syl | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Poset ) |
| 38 | 37 | ad2antlr | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Poset ) |
| 39 | 9 | ringgrpd | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Grp ) |
| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Grp ) |
| 41 | 10 13 | grpidcl | ⊢ ( 𝐹 ∈ Grp → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 42 | 40 41 | syl | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 43 | 40 | grpmgmd | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Mgm ) |
| 44 | simpll | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝑚 ∈ ℕ ) | |
| 45 | 31 | ad2antlr | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 46 | 10 12 | mulgnncl | ⊢ ( ( 𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 48 | 44 | peano2nnd | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 49 | 10 12 | mulgnncl | ⊢ ( ( 𝐹 ∈ Mgm ∧ ( 𝑚 + 1 ) ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 50 | 43 48 45 49 | syl3anc | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 51 | 42 47 50 | 3jca | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 52 | simpr | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) | |
| 53 | simplr | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ oField ) | |
| 54 | isofld | ⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) | |
| 55 | 54 | simprbi | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
| 56 | orngogrp | ⊢ ( 𝐹 ∈ oRing → 𝐹 ∈ oGrp ) | |
| 57 | 53 55 56 | 3syl | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ oGrp ) |
| 58 | 30 | ad2antlr | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) |
| 59 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 60 | 10 29 59 | ogrpaddlt | ⊢ ( ( 𝐹 ∈ oGrp ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ( lt ‘ 𝐹 ) ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 61 | 57 42 45 47 58 60 | syl131anc | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ( lt ‘ 𝐹 ) ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 62 | 10 59 13 40 47 | grplidd | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 63 | 62 | eqcomd | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 64 | 10 12 59 | mulgnnp1 | ⊢ ( ( 𝑚 ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 65 | 44 45 64 | syl2anc | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 66 | ringcmn | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ CMnd ) | |
| 67 | 53 9 66 | 3syl | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ CMnd ) |
| 68 | 10 59 | cmncom | ⊢ ( ( 𝐹 ∈ CMnd ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 69 | 67 47 45 68 | syl3anc | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 70 | 65 69 | eqtrd | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 71 | 61 63 70 | 3brtr4d | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 72 | 10 29 | plttr | ⊢ ( ( 𝐹 ∈ Poset ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 73 | 72 | imp | ⊢ ( ( ( 𝐹 ∈ Poset ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) ∧ ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 74 | 38 51 52 71 73 | syl22anc | ⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 75 | 74 | exp31 | ⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ∈ oField → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 76 | 75 | a2d | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 77 | 19 22 25 28 34 76 | nnind | ⊢ ( 𝑦 ∈ ℕ → ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 78 | 77 | impcom | ⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 79 | fvex | ⊢ ( 0g ‘ 𝐹 ) ∈ V | |
| 80 | ovex | ⊢ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ V | |
| 81 | 29 | pltne | ⊢ ( ( 𝐹 ∈ oField ∧ ( 0g ‘ 𝐹 ) ∈ V ∧ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ V ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 82 | 79 80 81 | mp3an23 | ⊢ ( 𝐹 ∈ oField → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 83 | 82 | adantr | ⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 84 | 78 83 | mpd | ⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 85 | 84 | necomd | ⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝐹 ) ) |
| 86 | 85 | neneqd | ⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 87 | 86 | ralrimiva | ⊢ ( 𝐹 ∈ oField → ∀ 𝑦 ∈ ℕ ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 88 | rabeq0 | ⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ ↔ ∀ 𝑦 ∈ ℕ ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) | |
| 89 | 87 88 | sylibr | ⊢ ( 𝐹 ∈ oField → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ ) |
| 90 | 89 | iftrued | ⊢ ( 𝐹 ∈ oField → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) = 0 ) |
| 91 | 16 90 | eqtrd | ⊢ ( 𝐹 ∈ oField → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = 0 ) |
| 92 | 4 91 | eqtr3id | ⊢ ( 𝐹 ∈ oField → ( chr ‘ 𝐹 ) = 0 ) |