This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | ogrpaddlt | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | isogrp | ⊢ ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ oMnd ) |
| 7 | simp2 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) | |
| 8 | simp1 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ oGrp ) | |
| 9 | simp21 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simp22 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ 𝐵 ) | |
| 11 | simp3 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) | |
| 12 | eqid | ⊢ ( le ‘ 𝐺 ) = ( le ‘ 𝐺 ) | |
| 13 | 12 2 | pltle | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝐺 ) 𝑌 ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝐺 ) 𝑌 ) |
| 15 | 8 9 10 11 14 | syl31anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝐺 ) 𝑌 ) |
| 16 | 1 12 3 | omndadd | ⊢ ( ( 𝐺 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ( le ‘ 𝐺 ) 𝑌 ) → ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ) |
| 17 | 6 7 15 16 | syl3anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ) |
| 18 | 2 | pltne | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ≠ 𝑌 ) ) |
| 19 | 18 | imp | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 20 | 8 9 10 11 19 | syl31anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 21 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 22 | 1 3 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |
| 23 | 22 | biimpd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 24 | 21 23 | sylan | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 25 | 24 | necon3d | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≠ 𝑌 → ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) |
| 26 | 25 | 3impia | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) |
| 27 | 8 7 20 26 | syl3anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) |
| 28 | ovex | ⊢ ( 𝑋 + 𝑍 ) ∈ V | |
| 29 | ovex | ⊢ ( 𝑌 + 𝑍 ) ∈ V | |
| 30 | 12 2 | pltval | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 + 𝑍 ) ∈ V ∧ ( 𝑌 + 𝑍 ) ∈ V ) → ( ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ↔ ( ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ∧ ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) ) |
| 31 | 28 29 30 | mp3an23 | ⊢ ( 𝐺 ∈ oGrp → ( ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ↔ ( ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ∧ ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ↔ ( ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ∧ ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) ) |
| 33 | 17 27 32 | mpbir2and | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |