This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orng0le1.1 | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| orng0le1.2 | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| ofld0lt1.3 | ⊢ < = ( lt ‘ 𝐹 ) | ||
| Assertion | ofldlt1 | ⊢ ( 𝐹 ∈ oField → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orng0le1.1 | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 2 | orng0le1.2 | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 3 | ofld0lt1.3 | ⊢ < = ( lt ‘ 𝐹 ) | |
| 4 | isofld | ⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
| 6 | eqid | ⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) | |
| 7 | 1 2 6 | orng0le1 | ⊢ ( 𝐹 ∈ oRing → 0 ( le ‘ 𝐹 ) 1 ) |
| 8 | 5 7 | syl | ⊢ ( 𝐹 ∈ oField → 0 ( le ‘ 𝐹 ) 1 ) |
| 9 | ofldfld | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) | |
| 10 | isfld | ⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) | |
| 11 | 10 | simplbi | ⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
| 12 | 1 2 | drngunz | ⊢ ( 𝐹 ∈ DivRing → 1 ≠ 0 ) |
| 13 | 9 11 12 | 3syl | ⊢ ( 𝐹 ∈ oField → 1 ≠ 0 ) |
| 14 | 13 | necomd | ⊢ ( 𝐹 ∈ oField → 0 ≠ 1 ) |
| 15 | 1 | fvexi | ⊢ 0 ∈ V |
| 16 | 2 | fvexi | ⊢ 1 ∈ V |
| 17 | 6 3 | pltval | ⊢ ( ( 𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V ) → ( 0 < 1 ↔ ( 0 ( le ‘ 𝐹 ) 1 ∧ 0 ≠ 1 ) ) ) |
| 18 | 15 16 17 | mp3an23 | ⊢ ( 𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 ( le ‘ 𝐹 ) 1 ∧ 0 ≠ 1 ) ) ) |
| 19 | 8 14 18 | mpbir2and | ⊢ ( 𝐹 ∈ oField → 0 < 1 ) |