This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odval.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| odval.4 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odval.i | ⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } | ||
| Assertion | odval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odval.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | odval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | odval.4 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 5 | odval.i | ⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } | |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 · 𝑥 ) = ( 𝑦 · 𝐴 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) |
| 9 | 8 5 | eqtr4di | ⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = 𝐼 ) |
| 10 | 9 | csbeq1d | ⊢ ( 𝑥 = 𝐴 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = ⦋ 𝐼 / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 11 | nnex | ⊢ ℕ ∈ V | |
| 12 | 5 11 | rabex2 | ⊢ 𝐼 ∈ V |
| 13 | eqeq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 = ∅ ↔ 𝐼 = ∅ ) ) | |
| 14 | infeq1 | ⊢ ( 𝑖 = 𝐼 → inf ( 𝑖 , ℝ , < ) = inf ( 𝐼 , ℝ , < ) ) | |
| 15 | 13 14 | ifbieq2d | ⊢ ( 𝑖 = 𝐼 → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| 16 | 12 15 | csbie | ⊢ ⦋ 𝐼 / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) |
| 17 | 10 16 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| 18 | 1 2 3 4 | odfval | ⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 19 | c0ex | ⊢ 0 ∈ V | |
| 20 | ltso | ⊢ < Or ℝ | |
| 21 | 20 | infex | ⊢ inf ( 𝐼 , ℝ , < ) ∈ V |
| 22 | 19 21 | ifex | ⊢ if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ∈ V |
| 23 | 17 18 22 | fvmpt | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |