This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnnp1.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgnnp1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnnp1.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℕ ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 4 5 | eleqtrdi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 7 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 9 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 10 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 11 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) = 𝑋 ) | |
| 12 | 9 10 11 | syl2anr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) = 𝑋 ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + 𝑋 ) ) |
| 14 | 8 13 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + 𝑋 ) ) |
| 15 | eqid | ⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | |
| 16 | 1 3 2 15 | mulgnn | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 17 | 10 16 | sylan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 18 | 1 3 2 15 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 19 | 18 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + 𝑋 ) ) |
| 20 | 14 17 19 | 3eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |