This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofldfld | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld | ⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |