This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The less-than relation is transitive. ( psstr analog.) (Contributed by NM, 2-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltnlt.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pltnlt.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | plttr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltnlt.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pltnlt.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 4 | 3 2 | pltle | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) |
| 5 | 4 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) |
| 6 | 3 2 | pltle | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 < 𝑍 → 𝑌 ( le ‘ 𝐾 ) 𝑍 ) ) |
| 7 | 6 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 < 𝑍 → 𝑌 ( le ‘ 𝐾 ) 𝑍 ) ) |
| 8 | 1 3 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑍 ) → 𝑋 ( le ‘ 𝐾 ) 𝑍 ) ) |
| 9 | 5 7 8 | syl2and | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 ( le ‘ 𝐾 ) 𝑍 ) ) |
| 10 | 1 2 | pltn2lp | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ) |
| 11 | 10 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ) |
| 12 | breq2 | ⊢ ( 𝑋 = 𝑍 → ( 𝑌 < 𝑋 ↔ 𝑌 < 𝑍 ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑋 = 𝑍 → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ↔ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) ) ) |
| 14 | 13 | notbid | ⊢ ( 𝑋 = 𝑍 → ( ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ↔ ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) ) ) |
| 15 | 11 14 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑍 → ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) ) ) |
| 16 | 15 | necon2ad | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 ≠ 𝑍 ) ) |
| 17 | 9 16 | jcad | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
| 18 | 3 2 | pltval | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
| 19 | 18 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
| 20 | 17 19 | sylibrd | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) ) |