This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrval.o | ⊢ 𝑂 = ( od ‘ 𝑅 ) | |
| chrval.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| chrval.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | ||
| Assertion | chrval | ⊢ ( 𝑂 ‘ 1 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrval.o | ⊢ 𝑂 = ( od ‘ 𝑅 ) | |
| 2 | chrval.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | chrval.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( od ‘ 𝑟 ) = ( od ‘ 𝑅 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( od ‘ 𝑟 ) = 𝑂 ) |
| 6 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
| 8 | 5 7 | fveq12d | ⊢ ( 𝑟 = 𝑅 → ( ( od ‘ 𝑟 ) ‘ ( 1r ‘ 𝑟 ) ) = ( 𝑂 ‘ 1 ) ) |
| 9 | df-chr | ⊢ chr = ( 𝑟 ∈ V ↦ ( ( od ‘ 𝑟 ) ‘ ( 1r ‘ 𝑟 ) ) ) | |
| 10 | fvex | ⊢ ( 𝑂 ‘ 1 ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑅 ∈ V → ( chr ‘ 𝑅 ) = ( 𝑂 ‘ 1 ) ) |
| 12 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( chr ‘ 𝑅 ) = ∅ ) | |
| 13 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( od ‘ 𝑅 ) = ∅ ) | |
| 14 | 1 13 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ∅ ) |
| 15 | 14 | fveq1d | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑂 ‘ 1 ) = ( ∅ ‘ 1 ) ) |
| 16 | 0fv | ⊢ ( ∅ ‘ 1 ) = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑂 ‘ 1 ) = ∅ ) |
| 18 | 12 17 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( chr ‘ 𝑅 ) = ( 𝑂 ‘ 1 ) ) |
| 19 | 11 18 | pm2.61i | ⊢ ( chr ‘ 𝑅 ) = ( 𝑂 ‘ 1 ) |
| 20 | 3 19 | eqtr2i | ⊢ ( 𝑂 ‘ 1 ) = 𝐶 |