This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | od1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| od1.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| odeq1.3 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | odeq1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 1 ↔ 𝐴 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | od1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | od1.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | odeq1.3 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 4 | oveq1 | ⊢ ( ( 𝑂 ‘ 𝐴 ) = 1 → ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 1 ( .g ‘ 𝐺 ) 𝐴 ) ) | |
| 5 | 4 | eqcomd | ⊢ ( ( 𝑂 ‘ 𝐴 ) = 1 → ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ) |
| 6 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 7 | 3 6 | mulg1 | ⊢ ( 𝐴 ∈ 𝑋 → ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |
| 8 | 3 1 6 2 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) = 0 ) |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ↔ 𝐴 = 0 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ↔ 𝐴 = 0 ) ) |
| 11 | 5 10 | imbitrid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 1 → 𝐴 = 0 ) ) |
| 12 | 1 2 | od1 | ⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ 0 ) = 1 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 0 ) = 1 ) |
| 14 | fveqeq2 | ⊢ ( 𝐴 = 0 → ( ( 𝑂 ‘ 𝐴 ) = 1 ↔ ( 𝑂 ‘ 0 ) = 1 ) ) | |
| 15 | 13 14 | syl5ibrcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 = 0 → ( 𝑂 ‘ 𝐴 ) = 1 ) ) |
| 16 | 11 15 | impbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 1 ↔ 𝐴 = 0 ) ) |