This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsdom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 2 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 3 | nn0re | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | nn0re | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) | |
| 5 | ltlen | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) ) |
| 7 | 1 2 6 | syl2an | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) ) |
| 8 | hashdom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) | |
| 9 | eqcom | ⊢ ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) | |
| 10 | hashen | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) | |
| 11 | 9 10 | bitrid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) ↔ 𝐴 ≈ 𝐵 ) ) |
| 12 | 11 | necon3abid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ↔ ¬ 𝐴 ≈ 𝐵 ) ) |
| 13 | 8 12 | anbi12d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 14 | 7 13 | bitrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 15 | brsdom | ⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) | |
| 16 | 14 15 | bitr4di | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) |