This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odsubdvds.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| Assertion | odsubdvds | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odsubdvds.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 3 | 2 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 5 | 2 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 7 | simp2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → 𝑆 ∈ Fin ) | |
| 8 | 6 7 | eqeltrrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ Fin ) |
| 9 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) | |
| 10 | 9 6 | eleqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 12 | eqid | ⊢ ( od ‘ ( 𝐺 ↾s 𝑆 ) ) = ( od ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 13 | 11 12 | oddvds2 | ⊢ ( ( ( 𝐺 ↾s 𝑆 ) ∈ Grp ∧ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ Fin ∧ 𝐴 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) → ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝐴 ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) ) |
| 14 | 4 8 10 13 | syl3anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝐴 ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) ) |
| 15 | 2 1 12 | subgod | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑂 ‘ 𝐴 ) = ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝐴 ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( 𝑂 ‘ 𝐴 ) = ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝐴 ) ) |
| 17 | 6 | fveq2d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) ) |
| 18 | 14 16 17 | 3brtr4d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑆 ) ) |