This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition is associative. Theorem 25 of Suppes p. 211. Theorem 4.2 of Schloeder p. 11. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaass | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o (/) ) ) |
|
| 2 | oveq2 | |- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
|
| 3 | 2 | oveq2d | |- ( x = (/) -> ( A +o ( B +o x ) ) = ( A +o ( B +o (/) ) ) ) |
| 4 | 1 3 | eqeq12d | |- ( x = (/) -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) ) |
| 5 | oveq2 | |- ( x = y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o y ) ) |
|
| 6 | oveq2 | |- ( x = y -> ( B +o x ) = ( B +o y ) ) |
|
| 7 | 6 | oveq2d | |- ( x = y -> ( A +o ( B +o x ) ) = ( A +o ( B +o y ) ) ) |
| 8 | 5 7 | eqeq12d | |- ( x = y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) ) |
| 9 | oveq2 | |- ( x = suc y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o suc y ) ) |
|
| 10 | oveq2 | |- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
|
| 11 | 10 | oveq2d | |- ( x = suc y -> ( A +o ( B +o x ) ) = ( A +o ( B +o suc y ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( x = suc y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 13 | oveq2 | |- ( x = C -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o C ) ) |
|
| 14 | oveq2 | |- ( x = C -> ( B +o x ) = ( B +o C ) ) |
|
| 15 | 14 | oveq2d | |- ( x = C -> ( A +o ( B +o x ) ) = ( A +o ( B +o C ) ) ) |
| 16 | 13 15 | eqeq12d | |- ( x = C -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 17 | oacl | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
|
| 18 | oa0 | |- ( ( A +o B ) e. On -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
|
| 19 | 17 18 | syl | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
| 20 | oa0 | |- ( B e. On -> ( B +o (/) ) = B ) |
|
| 21 | 20 | oveq2d | |- ( B e. On -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 22 | 21 | adantl | |- ( ( A e. On /\ B e. On ) -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 23 | 19 22 | eqtr4d | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) |
| 24 | suceq | |- ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) |
|
| 25 | oasuc | |- ( ( ( A +o B ) e. On /\ y e. On ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
|
| 26 | 17 25 | sylan | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
| 27 | oasuc | |- ( ( B e. On /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) |
|
| 28 | 27 | oveq2d | |- ( ( B e. On /\ y e. On ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 29 | 28 | adantl | |- ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 30 | oacl | |- ( ( B e. On /\ y e. On ) -> ( B +o y ) e. On ) |
|
| 31 | oasuc | |- ( ( A e. On /\ ( B +o y ) e. On ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
|
| 32 | 30 31 | sylan2 | |- ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
| 33 | 29 32 | eqtrd | |- ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 34 | 33 | anassrs | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 35 | 26 34 | eqeq12d | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) <-> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) ) |
| 36 | 24 35 | imbitrrid | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 37 | 36 | expcom | |- ( y e. On -> ( ( A e. On /\ B e. On ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) ) |
| 38 | iuneq2 | |- ( A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> U_ y e. x ( ( A +o B ) +o y ) = U_ y e. x ( A +o ( B +o y ) ) ) |
|
| 39 | 38 | adantl | |- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> U_ y e. x ( ( A +o B ) +o y ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 40 | vex | |- x e. _V |
|
| 41 | oalim | |- ( ( ( A +o B ) e. On /\ ( x e. _V /\ Lim x ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
|
| 42 | 40 41 | mpanr1 | |- ( ( ( A +o B ) e. On /\ Lim x ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 43 | 17 42 | sylan | |- ( ( ( A e. On /\ B e. On ) /\ Lim x ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 44 | 43 | ancoms | |- ( ( Lim x /\ ( A e. On /\ B e. On ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 45 | 44 | adantr | |- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 46 | oalimcl | |- ( ( B e. On /\ ( x e. _V /\ Lim x ) ) -> Lim ( B +o x ) ) |
|
| 47 | 40 46 | mpanr1 | |- ( ( B e. On /\ Lim x ) -> Lim ( B +o x ) ) |
| 48 | 47 | ancoms | |- ( ( Lim x /\ B e. On ) -> Lim ( B +o x ) ) |
| 49 | ovex | |- ( B +o x ) e. _V |
|
| 50 | oalim | |- ( ( A e. On /\ ( ( B +o x ) e. _V /\ Lim ( B +o x ) ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) |
|
| 51 | 49 50 | mpanr1 | |- ( ( A e. On /\ Lim ( B +o x ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) |
| 52 | 48 51 | sylan2 | |- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) |
| 53 | limelon | |- ( ( x e. _V /\ Lim x ) -> x e. On ) |
|
| 54 | 40 53 | mpan | |- ( Lim x -> x e. On ) |
| 55 | oacl | |- ( ( B e. On /\ x e. On ) -> ( B +o x ) e. On ) |
|
| 56 | 55 | ancoms | |- ( ( x e. On /\ B e. On ) -> ( B +o x ) e. On ) |
| 57 | onelon | |- ( ( ( B +o x ) e. On /\ z e. ( B +o x ) ) -> z e. On ) |
|
| 58 | 57 | ex | |- ( ( B +o x ) e. On -> ( z e. ( B +o x ) -> z e. On ) ) |
| 59 | 56 58 | syl | |- ( ( x e. On /\ B e. On ) -> ( z e. ( B +o x ) -> z e. On ) ) |
| 60 | 59 | adantld | |- ( ( x e. On /\ B e. On ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> z e. On ) ) |
| 61 | 60 | adantl | |- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> z e. On ) ) |
| 62 | 0ellim | |- ( Lim x -> (/) e. x ) |
|
| 63 | onelss | |- ( B e. On -> ( z e. B -> z C_ B ) ) |
|
| 64 | 20 | sseq2d | |- ( B e. On -> ( z C_ ( B +o (/) ) <-> z C_ B ) ) |
| 65 | 63 64 | sylibrd | |- ( B e. On -> ( z e. B -> z C_ ( B +o (/) ) ) ) |
| 66 | 65 | imp | |- ( ( B e. On /\ z e. B ) -> z C_ ( B +o (/) ) ) |
| 67 | oveq2 | |- ( y = (/) -> ( B +o y ) = ( B +o (/) ) ) |
|
| 68 | 67 | sseq2d | |- ( y = (/) -> ( z C_ ( B +o y ) <-> z C_ ( B +o (/) ) ) ) |
| 69 | 68 | rspcev | |- ( ( (/) e. x /\ z C_ ( B +o (/) ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 70 | 62 66 69 | syl2an | |- ( ( Lim x /\ ( B e. On /\ z e. B ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 71 | 70 | expr | |- ( ( Lim x /\ B e. On ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) |
| 72 | 71 | adantrl | |- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) |
| 73 | 72 | adantrr | |- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) |
| 74 | oawordex | |- ( ( B e. On /\ z e. On ) -> ( B C_ z <-> E. y e. On ( B +o y ) = z ) ) |
|
| 75 | 74 | ad2ant2l | |- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( B C_ z <-> E. y e. On ( B +o y ) = z ) ) |
| 76 | oaord | |- ( ( y e. On /\ x e. On /\ B e. On ) -> ( y e. x <-> ( B +o y ) e. ( B +o x ) ) ) |
|
| 77 | 76 | 3expb | |- ( ( y e. On /\ ( x e. On /\ B e. On ) ) -> ( y e. x <-> ( B +o y ) e. ( B +o x ) ) ) |
| 78 | eleq1 | |- ( ( B +o y ) = z -> ( ( B +o y ) e. ( B +o x ) <-> z e. ( B +o x ) ) ) |
|
| 79 | 77 78 | sylan9bb | |- ( ( ( y e. On /\ ( x e. On /\ B e. On ) ) /\ ( B +o y ) = z ) -> ( y e. x <-> z e. ( B +o x ) ) ) |
| 80 | 79 | an32s | |- ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) -> ( y e. x <-> z e. ( B +o x ) ) ) |
| 81 | 80 | biimpar | |- ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> y e. x ) |
| 82 | eqimss2 | |- ( ( B +o y ) = z -> z C_ ( B +o y ) ) |
|
| 83 | 82 | ad3antlr | |- ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> z C_ ( B +o y ) ) |
| 84 | 81 83 | jca | |- ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> ( y e. x /\ z C_ ( B +o y ) ) ) |
| 85 | 84 | anasss | |- ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) ) -> ( y e. x /\ z C_ ( B +o y ) ) ) |
| 86 | 85 | expcom | |- ( ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) -> ( ( y e. On /\ ( B +o y ) = z ) -> ( y e. x /\ z C_ ( B +o y ) ) ) ) |
| 87 | 86 | reximdv2 | |- ( ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) -> ( E. y e. On ( B +o y ) = z -> E. y e. x z C_ ( B +o y ) ) ) |
| 88 | 87 | adantrr | |- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( E. y e. On ( B +o y ) = z -> E. y e. x z C_ ( B +o y ) ) ) |
| 89 | 75 88 | sylbid | |- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( B C_ z -> E. y e. x z C_ ( B +o y ) ) ) |
| 90 | 89 | adantl | |- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( B C_ z -> E. y e. x z C_ ( B +o y ) ) ) |
| 91 | eloni | |- ( z e. On -> Ord z ) |
|
| 92 | eloni | |- ( B e. On -> Ord B ) |
|
| 93 | ordtri2or | |- ( ( Ord z /\ Ord B ) -> ( z e. B \/ B C_ z ) ) |
|
| 94 | 91 92 93 | syl2anr | |- ( ( B e. On /\ z e. On ) -> ( z e. B \/ B C_ z ) ) |
| 95 | 94 | ad2ant2l | |- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( z e. B \/ B C_ z ) ) |
| 96 | 95 | adantl | |- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( z e. B \/ B C_ z ) ) |
| 97 | 73 90 96 | mpjaod | |- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 98 | 97 | exp45 | |- ( Lim x -> ( ( x e. On /\ B e. On ) -> ( z e. ( B +o x ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) ) |
| 99 | 98 | imp | |- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( z e. ( B +o x ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) |
| 100 | 99 | adantld | |- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) |
| 101 | 100 | imp32 | |- ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 102 | simplrr | |- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> z e. On ) |
|
| 103 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 104 | 103 30 | sylan2 | |- ( ( B e. On /\ ( x e. On /\ y e. x ) ) -> ( B +o y ) e. On ) |
| 105 | 104 | exp32 | |- ( B e. On -> ( x e. On -> ( y e. x -> ( B +o y ) e. On ) ) ) |
| 106 | 105 | com12 | |- ( x e. On -> ( B e. On -> ( y e. x -> ( B +o y ) e. On ) ) ) |
| 107 | 106 | imp31 | |- ( ( ( x e. On /\ B e. On ) /\ y e. x ) -> ( B +o y ) e. On ) |
| 108 | 107 | ad4ant24 | |- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> ( B +o y ) e. On ) |
| 109 | simpll | |- ( ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) -> A e. On ) |
|
| 110 | 109 | ad2antlr | |- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> A e. On ) |
| 111 | oaword | |- ( ( z e. On /\ ( B +o y ) e. On /\ A e. On ) -> ( z C_ ( B +o y ) <-> ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
|
| 112 | 102 108 110 111 | syl3anc | |- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> ( z C_ ( B +o y ) <-> ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 113 | 112 | rexbidva | |- ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> ( E. y e. x z C_ ( B +o y ) <-> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 114 | 101 113 | mpbid | |- ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) |
| 115 | 114 | exp32 | |- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> ( z e. On -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) |
| 116 | 61 115 | mpdd | |- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 117 | 116 | exp32 | |- ( Lim x -> ( x e. On -> ( B e. On -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) ) |
| 118 | 54 117 | mpd | |- ( Lim x -> ( B e. On -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) |
| 119 | 118 | exp4a | |- ( Lim x -> ( B e. On -> ( A e. On -> ( z e. ( B +o x ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) ) |
| 120 | 119 | imp31 | |- ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> ( z e. ( B +o x ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 121 | 120 | ralrimiv | |- ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> A. z e. ( B +o x ) E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) |
| 122 | iunss2 | |- ( A. z e. ( B +o x ) E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) |
|
| 123 | 121 122 | syl | |- ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) |
| 124 | 123 | ancoms | |- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) |
| 125 | oaordi | |- ( ( x e. On /\ B e. On ) -> ( y e. x -> ( B +o y ) e. ( B +o x ) ) ) |
|
| 126 | 125 | anim1d | |- ( ( x e. On /\ B e. On ) -> ( ( y e. x /\ w e. ( A +o ( B +o y ) ) ) -> ( ( B +o y ) e. ( B +o x ) /\ w e. ( A +o ( B +o y ) ) ) ) ) |
| 127 | oveq2 | |- ( z = ( B +o y ) -> ( A +o z ) = ( A +o ( B +o y ) ) ) |
|
| 128 | 127 | eleq2d | |- ( z = ( B +o y ) -> ( w e. ( A +o z ) <-> w e. ( A +o ( B +o y ) ) ) ) |
| 129 | 128 | rspcev | |- ( ( ( B +o y ) e. ( B +o x ) /\ w e. ( A +o ( B +o y ) ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) |
| 130 | 126 129 | syl6 | |- ( ( x e. On /\ B e. On ) -> ( ( y e. x /\ w e. ( A +o ( B +o y ) ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) |
| 131 | 130 | expd | |- ( ( x e. On /\ B e. On ) -> ( y e. x -> ( w e. ( A +o ( B +o y ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) ) |
| 132 | 131 | rexlimdv | |- ( ( x e. On /\ B e. On ) -> ( E. y e. x w e. ( A +o ( B +o y ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) |
| 133 | eliun | |- ( w e. U_ y e. x ( A +o ( B +o y ) ) <-> E. y e. x w e. ( A +o ( B +o y ) ) ) |
|
| 134 | eliun | |- ( w e. U_ z e. ( B +o x ) ( A +o z ) <-> E. z e. ( B +o x ) w e. ( A +o z ) ) |
|
| 135 | 132 133 134 | 3imtr4g | |- ( ( x e. On /\ B e. On ) -> ( w e. U_ y e. x ( A +o ( B +o y ) ) -> w e. U_ z e. ( B +o x ) ( A +o z ) ) ) |
| 136 | 135 | ssrdv | |- ( ( x e. On /\ B e. On ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) |
| 137 | 54 136 | sylan | |- ( ( Lim x /\ B e. On ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) |
| 138 | 137 | adantl | |- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) |
| 139 | 124 138 | eqssd | |- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ z e. ( B +o x ) ( A +o z ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 140 | 52 139 | eqtrd | |- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 141 | 140 | an12s | |- ( ( Lim x /\ ( A e. On /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 142 | 141 | adantr | |- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 143 | 39 45 142 | 3eqtr4d | |- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) |
| 144 | 143 | exp31 | |- ( Lim x -> ( ( A e. On /\ B e. On ) -> ( A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) ) ) |
| 145 | 4 8 12 16 23 37 144 | tfinds3 | |- ( C e. On -> ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 146 | 145 | com12 | |- ( ( A e. On /\ B e. On ) -> ( C e. On -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 147 | 146 | 3impia | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |