This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recursive definition of ordinal addition. Exercise 25 of Enderton p. 240. (Contributed by NM, 26-Dec-2004) (Revised by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oarec | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑧 = ∅ → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o ∅ ) ) | |
| 2 | mpteq1 | ⊢ ( 𝑧 = ∅ → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 3 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( 𝐴 +o 𝑥 ) ) = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ∅ ) |
| 5 | 4 | rneqd | ⊢ ( 𝑧 = ∅ → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ∅ ) |
| 6 | rn0 | ⊢ ran ∅ = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑧 = ∅ → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ∅ ) |
| 8 | 7 | uneq2d | ⊢ ( 𝑧 = ∅ → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ∅ ) ) |
| 9 | 1 8 | eqeq12d | ⊢ ( 𝑧 = ∅ → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o ∅ ) = ( 𝐴 ∪ ∅ ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ) | |
| 11 | mpteq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 12 | 11 | rneqd | ⊢ ( 𝑧 = 𝑤 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 13 | 12 | uneq2d | ⊢ ( 𝑧 = 𝑤 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 14 | 10 13 | eqeq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑧 = suc 𝑤 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o suc 𝑤 ) ) | |
| 16 | mpteq1 | ⊢ ( 𝑧 = suc 𝑤 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 17 | 16 | rneqd | ⊢ ( 𝑧 = suc 𝑤 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 18 | 17 | uneq2d | ⊢ ( 𝑧 = suc 𝑤 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 19 | 15 18 | eqeq12d | ⊢ ( 𝑧 = suc 𝑤 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝐵 ) ) | |
| 21 | mpteq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 22 | 21 | rneqd | ⊢ ( 𝑧 = 𝐵 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 23 | 22 | uneq2d | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 24 | 20 23 | eqeq12d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 25 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 26 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 27 | 25 26 | eqtr4di | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 ∪ ∅ ) ) |
| 28 | uneq1 | ⊢ ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) | |
| 29 | unass | ⊢ ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) | |
| 30 | rexun | ⊢ ( ∃ 𝑥 ∈ ( 𝑤 ∪ { 𝑤 } ) 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) ) | |
| 31 | df-suc | ⊢ suc 𝑤 = ( 𝑤 ∪ { 𝑤 } ) | |
| 32 | 31 | rexeqi | ⊢ ( ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝑤 ∪ { 𝑤 } ) 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 33 | eqid | ⊢ ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 34 | 33 | elrnmpt | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 35 | 34 | elv | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 36 | velsn | ⊢ ( 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) | |
| 37 | vex | ⊢ 𝑤 ∈ V | |
| 38 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑤 ) ) | |
| 39 | 38 | eqeq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 = ( 𝐴 +o 𝑥 ) ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) ) |
| 40 | 37 39 | rexsn | ⊢ ( ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) |
| 41 | 36 40 | bitr4i | ⊢ ( 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ↔ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 42 | 35 41 | orbi12i | ⊢ ( ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ↔ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 43 | 30 32 42 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ) |
| 44 | eqid | ⊢ ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 45 | ovex | ⊢ ( 𝐴 +o 𝑥 ) ∈ V | |
| 46 | 44 45 | elrnmpti | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 47 | elun | ⊢ ( 𝑦 ∈ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ↔ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ) | |
| 48 | 43 46 47 | 3bitr4i | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ 𝑦 ∈ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 49 | 48 | eqriv | ⊢ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) |
| 50 | 49 | uneq2i | ⊢ ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 51 | 29 50 | eqtr4i | ⊢ ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 52 | 28 51 | eqtrdi | ⊢ ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 53 | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( 𝐴 +o suc 𝑤 ) = suc ( 𝐴 +o 𝑤 ) ) | |
| 54 | df-suc | ⊢ suc ( 𝐴 +o 𝑤 ) = ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) | |
| 55 | 53 54 | eqtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( 𝐴 +o suc 𝑤 ) = ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 56 | 55 | eqeq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 57 | 52 56 | imbitrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 58 | 57 | expcom | ⊢ ( 𝑤 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) ) |
| 59 | vex | ⊢ 𝑧 ∈ V | |
| 60 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑧 ∈ V ∧ Lim 𝑧 ) ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) | |
| 61 | 59 60 | mpanr1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑧 ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 62 | 61 | ancoms | ⊢ ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 64 | iuneq2 | ⊢ ( ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) | |
| 65 | 64 | adantl | ⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 66 | iunun | ⊢ ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( ∪ 𝑤 ∈ 𝑧 𝐴 ∪ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 67 | 0ellim | ⊢ ( Lim 𝑧 → ∅ ∈ 𝑧 ) | |
| 68 | ne0i | ⊢ ( ∅ ∈ 𝑧 → 𝑧 ≠ ∅ ) | |
| 69 | iunconst | ⊢ ( 𝑧 ≠ ∅ → ∪ 𝑤 ∈ 𝑧 𝐴 = 𝐴 ) | |
| 70 | 67 68 69 | 3syl | ⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 𝐴 = 𝐴 ) |
| 71 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) | |
| 72 | 35 71 | bitri | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 73 | 72 | rexbii | ⊢ ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 74 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝑧 ↔ ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ) | |
| 75 | 74 | anbi1i | ⊢ ( ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ( ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 76 | r19.41v | ⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ( ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) | |
| 77 | 75 76 | bitr4i | ⊢ ( ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 78 | 77 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 79 | df-rex | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) | |
| 80 | rexcom4 | ⊢ ( ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) | |
| 81 | 78 79 80 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 82 | 73 81 | bitr4i | ⊢ ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 83 | limuni | ⊢ ( Lim 𝑧 → 𝑧 = ∪ 𝑧 ) | |
| 84 | 83 | rexeqdv | ⊢ ( Lim 𝑧 → ( ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 85 | 82 84 | bitr4id | ⊢ ( Lim 𝑧 → ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 86 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 87 | eqid | ⊢ ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 88 | 87 45 | elrnmpti | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 89 | 85 86 88 | 3bitr4g | ⊢ ( Lim 𝑧 → ( 𝑦 ∈ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 90 | 89 | eqrdv | ⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 91 | 70 90 | uneq12d | ⊢ ( Lim 𝑧 → ( ∪ 𝑤 ∈ 𝑧 𝐴 ∪ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 92 | 66 91 | eqtrid | ⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 94 | 63 65 93 | 3eqtrd | ⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 95 | 94 | exp31 | ⊢ ( Lim 𝑧 → ( 𝐴 ∈ On → ( ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) ) |
| 96 | 9 14 19 24 27 58 95 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 97 | 96 | impcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |