This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol* ( A ) = 0 while "outer measure zero" means that for any x there is a y containing A with volume less than x . Assuming AC, these notions are equivalent (because the intersection of all such y is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of Fremlin5 p. 193. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nulmbl2 | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 2 | 1 | ne0ii | ⊢ ℝ+ ≠ ∅ |
| 3 | r19.2z | ⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 5 | simprl | ⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝐴 ⊆ 𝑦 ) | |
| 6 | mblss | ⊢ ( 𝑦 ∈ dom vol → 𝑦 ⊆ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝑦 ⊆ ℝ ) |
| 8 | 5 7 | sstrd | ⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝐴 ⊆ ℝ ) |
| 9 | 8 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 10 | 9 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 11 | 4 10 | syl | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 12 | inss1 | ⊢ ( 𝑧 ∩ 𝐴 ) ⊆ 𝑧 | |
| 13 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → 𝑧 ⊆ ℝ ) |
| 15 | simpr | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) | |
| 16 | ovolsscl | ⊢ ( ( ( 𝑧 ∩ 𝐴 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 17 | 12 14 15 16 | mp3an2i | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
| 18 | difssd | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( 𝑧 ∖ 𝐴 ) ⊆ 𝑧 ) | |
| 19 | ovolsscl | ⊢ ( ( ( 𝑧 ∖ 𝐴 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 20 | 18 14 15 19 | syl3anc | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
| 21 | 17 20 | readdcld | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 23 | 15 | ad2antrr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 24 | difssd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ) | |
| 25 | 7 | adantl | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑦 ⊆ ℝ ) |
| 26 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 27 | 26 | ad2antlr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 28 | simprrr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑦 ) ≤ 𝑥 ) | |
| 29 | ovollecl | ⊢ ( ( 𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ( vol* ‘ 𝑦 ) ∈ ℝ ) | |
| 30 | 25 27 28 29 | syl3anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑦 ) ∈ ℝ ) |
| 31 | ovolsscl | ⊢ ( ( ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ∧ ( vol* ‘ 𝑦 ) ∈ ℝ ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 32 | 24 25 30 31 | syl3anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) |
| 33 | 23 32 | readdcld | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 34 | 23 27 | readdcld | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + 𝑥 ) ∈ ℝ ) |
| 35 | 17 | ad2antrr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
| 36 | 20 | ad2antrr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
| 37 | inss1 | ⊢ ( 𝑧 ∩ 𝑦 ) ⊆ 𝑧 | |
| 38 | 14 | ad2antrr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑧 ⊆ ℝ ) |
| 39 | ovolsscl | ⊢ ( ( ( 𝑧 ∩ 𝑦 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℝ ) | |
| 40 | 37 38 23 39 | mp3an2i | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℝ ) |
| 41 | difssd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝑦 ) ⊆ 𝑧 ) | |
| 42 | ovolsscl | ⊢ ( ( ( 𝑧 ∖ 𝑦 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) | |
| 43 | 41 38 23 42 | syl3anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) |
| 44 | 43 32 | readdcld | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 45 | simprrl | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝐴 ⊆ 𝑦 ) | |
| 46 | sslin | ⊢ ( 𝐴 ⊆ 𝑦 → ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ) |
| 48 | 37 38 | sstrid | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∩ 𝑦 ) ⊆ ℝ ) |
| 49 | ovolss | ⊢ ( ( ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ∧ ( 𝑧 ∩ 𝑦 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 50 | 47 48 49 | syl2anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ) |
| 51 | 38 | ssdifssd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝑦 ) ⊆ ℝ ) |
| 52 | 25 | ssdifssd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∖ 𝐴 ) ⊆ ℝ ) |
| 53 | 51 52 | unssd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ) |
| 54 | ovolun | ⊢ ( ( ( ( 𝑧 ∖ 𝑦 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) ∧ ( ( 𝑦 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) | |
| 55 | 51 43 52 32 54 | syl22anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 56 | ovollecl | ⊢ ( ( ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ∧ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) | |
| 57 | 53 44 55 56 | syl3anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 58 | ssun1 | ⊢ 𝑧 ⊆ ( 𝑧 ∪ 𝑦 ) | |
| 59 | undif1 | ⊢ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) = ( 𝑧 ∪ 𝑦 ) | |
| 60 | 58 59 | sseqtrri | ⊢ 𝑧 ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) |
| 61 | ssdif | ⊢ ( 𝑧 ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) → ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) ) | |
| 62 | 60 61 | ax-mp | ⊢ ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) |
| 63 | difundir | ⊢ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) = ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) | |
| 64 | 62 63 | sseqtri | ⊢ ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) |
| 65 | difun1 | ⊢ ( 𝑧 ∖ ( 𝑦 ∪ 𝐴 ) ) = ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) | |
| 66 | ssequn2 | ⊢ ( 𝐴 ⊆ 𝑦 ↔ ( 𝑦 ∪ 𝐴 ) = 𝑦 ) | |
| 67 | 45 66 | sylib | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∪ 𝐴 ) = 𝑦 ) |
| 68 | 67 | difeq2d | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ ( 𝑦 ∪ 𝐴 ) ) = ( 𝑧 ∖ 𝑦 ) ) |
| 69 | 65 68 | eqtr3id | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) = ( 𝑧 ∖ 𝑦 ) ) |
| 70 | 69 | uneq1d | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) = ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) |
| 71 | 64 70 | sseqtrid | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝐴 ) ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) |
| 72 | ovolss | ⊢ ( ( ( 𝑧 ∖ 𝐴 ) ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ∧ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ) | |
| 73 | 71 53 72 | syl2anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 74 | 36 57 44 73 55 | letrd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 75 | 35 36 40 44 50 74 | le2addd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
| 76 | simprl | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑦 ∈ dom vol ) | |
| 77 | mblsplit | ⊢ ( ( 𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ 𝑧 ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) ) | |
| 78 | 76 38 23 77 | syl3anc | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑧 ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) ) |
| 79 | 78 | oveq1d | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 80 | 40 | recnd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℂ ) |
| 81 | 43 | recnd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℂ ) |
| 82 | 32 | recnd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℂ ) |
| 83 | 80 81 82 | addassd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
| 84 | 79 83 | eqtrd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
| 85 | 75 84 | breqtrrd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 86 | difss | ⊢ ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 | |
| 87 | ovolss | ⊢ ( ( ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑦 ) ) | |
| 88 | 86 25 87 | sylancr | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑦 ) ) |
| 89 | 32 30 27 88 28 | letrd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ 𝑥 ) |
| 90 | 32 27 23 89 | leadd2dd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
| 91 | 22 33 34 85 90 | letrd | ⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
| 92 | 91 | rexlimdvaa | ⊢ ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 93 | 92 | ralimdva | ⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 94 | 93 | impcom | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
| 95 | 21 | adantl | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 96 | 95 | rexrd | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ* ) |
| 97 | simprr | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) | |
| 98 | xralrple | ⊢ ( ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ* ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) | |
| 99 | 96 97 98 | syl2anc | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 100 | 94 99 | mpbird | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) |
| 101 | 100 | expr | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ 𝑧 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 102 | 101 | ralrimiva | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 103 | ismbl2 | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) ) | |
| 104 | 11 102 103 | sylanbrc | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ∈ dom vol ) |