This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xralrple | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpge0 | ⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ 𝑥 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ 𝑥 ) |
| 3 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 4 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 6 | 3 5 | addge01d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 0 ≤ 𝑥 ↔ 𝐵 ≤ ( 𝐵 + 𝑥 ) ) ) |
| 7 | 2 6 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ≤ ( 𝐵 + 𝑥 ) ) |
| 8 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) | |
| 9 | 3 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
| 10 | 3 5 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + 𝑥 ) ∈ ℝ ) |
| 11 | 10 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + 𝑥 ) ∈ ℝ* ) |
| 12 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐵 + 𝑥 ) ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 𝑥 ) ) → 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) | |
| 13 | 8 9 11 12 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 𝑥 ) ) → 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
| 14 | 7 13 | mpan2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 → 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
| 15 | 14 | ralrimdva | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
| 16 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
| 18 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ* ) | |
| 19 | qbtwnxr | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 < 𝐴 ) → ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) | |
| 20 | 19 | 3expia | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) |
| 21 | 17 18 20 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) |
| 22 | simprrl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐵 < 𝑦 ) | |
| 23 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐵 ∈ ℝ ) | |
| 24 | qre | ⊢ ( 𝑦 ∈ ℚ → 𝑦 ∈ ℝ ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 ∈ ℝ ) |
| 26 | difrp | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐵 < 𝑦 ↔ ( 𝑦 − 𝐵 ) ∈ ℝ+ ) ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝐵 < 𝑦 ↔ ( 𝑦 − 𝐵 ) ∈ ℝ+ ) ) |
| 28 | 22 27 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝑦 − 𝐵 ) ∈ ℝ+ ) |
| 29 | simprrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 < 𝐴 ) | |
| 30 | 25 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 ∈ ℝ* ) |
| 31 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) | |
| 32 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑦 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑦 ) ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝑦 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑦 ) ) |
| 34 | 29 33 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ¬ 𝐴 ≤ 𝑦 ) |
| 35 | 23 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝐵 ∈ ℂ ) |
| 36 | 25 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → 𝑦 ∈ ℂ ) |
| 37 | 35 36 | pncan3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝐵 + ( 𝑦 − 𝐵 ) ) = 𝑦 ) |
| 38 | 37 | breq2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ( 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ↔ 𝐴 ≤ 𝑦 ) ) |
| 39 | 34 38 | mtbird | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ¬ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) |
| 40 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 − 𝐵 ) → ( 𝐵 + 𝑥 ) = ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) | |
| 41 | 40 | breq2d | ⊢ ( 𝑥 = ( 𝑦 − 𝐵 ) → ( 𝐴 ≤ ( 𝐵 + 𝑥 ) ↔ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) ) |
| 42 | 41 | notbid | ⊢ ( 𝑥 = ( 𝑦 − 𝐵 ) → ( ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ↔ ¬ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) ) |
| 43 | 42 | rspcev | ⊢ ( ( ( 𝑦 − 𝐵 ) ∈ ℝ+ ∧ ¬ 𝐴 ≤ ( 𝐵 + ( 𝑦 − 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
| 44 | 28 39 43 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ∃ 𝑥 ∈ ℝ+ ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
| 45 | rexnal | ⊢ ( ∃ 𝑥 ∈ ℝ+ ¬ 𝐴 ≤ ( 𝐵 + 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) | |
| 46 | 44 45 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℚ ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) → ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) |
| 47 | 46 | rexlimdvaa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℚ ( 𝐵 < 𝑦 ∧ 𝑦 < 𝐴 ) → ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
| 48 | 21 47 | syld | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → ¬ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
| 49 | 48 | con2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) → ¬ 𝐵 < 𝐴 ) ) |
| 50 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 51 | 16 50 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 52 | 49 51 | sylibrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) → 𝐴 ≤ 𝐵 ) ) |
| 53 | 15 52 | impbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |