This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015) (Proof shortened by AV, 29-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | ||
| nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | ||
| nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| nmoleub2a.5 | ⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) | ||
| nmoleub2lem3.p | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| nmoleub2lem3.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| nmoleub2lem3.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| nmoleub2lem3.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| nmoleub2lem3.4 | ⊢ ( 𝜑 → 𝐵 ≠ ( 0g ‘ 𝑆 ) ) | ||
| nmoleub2lem3.5 | ⊢ ( 𝜑 → ( ( 𝑟 · 𝐵 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) | ||
| nmoleub2lem3.6 | ⊢ ( 𝜑 → ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) | ||
| Assertion | nmoleub2lem3 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | |
| 6 | nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 8 | nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 9 | nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 10 | nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 11 | nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 12 | nmoleub2a.5 | ⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) | |
| 13 | nmoleub2lem3.p | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 14 | nmoleub2lem3.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 15 | nmoleub2lem3.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 16 | nmoleub2lem3.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 17 | nmoleub2lem3.4 | ⊢ ( 𝜑 → 𝐵 ≠ ( 0g ‘ 𝑆 ) ) | |
| 18 | nmoleub2lem3.5 | ⊢ ( 𝜑 → ( ( 𝑟 · 𝐵 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) | |
| 19 | nmoleub2lem3.6 | ⊢ ( 𝜑 → ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) | |
| 20 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ) | |
| 21 | qre | ⊢ ( 𝑟 ∈ ℚ → 𝑟 ∈ ℝ ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑟 ∈ ℝ ) |
| 23 | 11 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 24 | 14 23 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝑅 ) ∈ ℝ ) |
| 25 | 8 | elin1d | ⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
| 26 | nlmngp | ⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |
| 28 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 29 | 2 28 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 30 | 9 29 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 31 | 30 16 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ 𝑇 ) ) |
| 32 | 28 4 | nmcl | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
| 33 | 27 31 32 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
| 34 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 35 | 7 | elin1d | ⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
| 36 | nlmngp | ⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) |
| 38 | 2 3 | nmcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → ( 𝐿 ‘ 𝐵 ) ∈ ℝ ) |
| 39 | 37 16 38 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐵 ) ∈ ℝ ) |
| 40 | 14 39 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ∈ ℝ ) |
| 41 | 2 3 | nmge0 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → 0 ≤ ( 𝐿 ‘ 𝐵 ) ) |
| 42 | 37 16 41 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐿 ‘ 𝐵 ) ) |
| 43 | 14 39 15 42 | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) |
| 44 | 40 33 | ltnled | ⊢ ( 𝜑 → ( ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) ) |
| 45 | 19 44 | mpbird | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 46 | 34 40 33 43 45 | lelttrd | ⊢ ( 𝜑 → 0 < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 47 | 33 46 | elrpd | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ+ ) |
| 48 | 24 47 | rerpdivcld | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 50 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 51 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) → 𝑟 ∈ 𝐾 ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑟 ∈ 𝐾 ) |
| 53 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝐵 ∈ 𝑉 ) |
| 54 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 55 | 5 6 2 13 54 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑟 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) |
| 56 | 50 52 53 55 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) |
| 57 | 56 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) = ( 𝑀 ‘ ( 𝑟 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 58 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑇 ∈ NrmMod ) |
| 59 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 60 | 5 59 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
| 61 | 50 60 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
| 62 | 61 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ 𝐺 ) ) |
| 63 | 62 6 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = 𝐾 ) |
| 64 | 52 63 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 65 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ 𝑇 ) ) |
| 66 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) | |
| 67 | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ ( Scalar ‘ 𝑇 ) ) | |
| 68 | 28 4 54 59 66 67 | nmvs | ⊢ ( ( 𝑇 ∈ NrmMod ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝑟 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ 𝑟 ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 69 | 58 64 65 68 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑀 ‘ ( 𝑟 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ 𝑟 ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 70 | 61 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ 𝐺 ) ) |
| 71 | 70 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ 𝑟 ) = ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) ) |
| 72 | 7 | elin2d | ⊢ ( 𝜑 → 𝑆 ∈ ℂMod ) |
| 73 | 72 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑆 ∈ ℂMod ) |
| 74 | 5 6 | clmabs | ⊢ ( ( 𝑆 ∈ ℂMod ∧ 𝑟 ∈ 𝐾 ) → ( abs ‘ 𝑟 ) = ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) ) |
| 75 | 73 52 74 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( abs ‘ 𝑟 ) = ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) ) |
| 76 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 0 ∈ ℝ ) | |
| 77 | 11 | rpge0d | ⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 78 | 14 23 15 77 | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝑅 ) ) |
| 79 | divge0 | ⊢ ( ( ( ( 𝐴 · 𝑅 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝑅 ) ) ∧ ( ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) → 0 ≤ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) | |
| 80 | 24 78 33 46 79 | syl22anc | ⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 81 | 80 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 0 ≤ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 82 | 76 49 22 81 20 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 0 < 𝑟 ) |
| 83 | 76 22 82 | ltled | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 0 ≤ 𝑟 ) |
| 84 | 22 83 | absidd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( abs ‘ 𝑟 ) = 𝑟 ) |
| 85 | 75 84 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) = 𝑟 ) |
| 86 | 71 85 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ 𝑟 ) = 𝑟 ) |
| 87 | 86 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ 𝑟 ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 88 | 57 69 87 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) = ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 89 | 88 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) / 𝑅 ) = ( ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) / 𝑅 ) ) |
| 90 | 2 5 13 6 | clmvscl | ⊢ ( ( 𝑆 ∈ ℂMod ∧ 𝑟 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑟 · 𝐵 ) ∈ 𝑉 ) |
| 91 | 73 52 53 90 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑟 · 𝐵 ) ∈ 𝑉 ) |
| 92 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑆 ∈ NrmMod ) |
| 93 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 94 | 2 3 13 5 6 93 | nmvs | ⊢ ( ( 𝑆 ∈ NrmMod ∧ 𝑟 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) · ( 𝐿 ‘ 𝐵 ) ) ) |
| 95 | 92 52 53 94 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) · ( 𝐿 ‘ 𝐵 ) ) ) |
| 96 | 85 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( ( norm ‘ 𝐺 ) ‘ 𝑟 ) · ( 𝐿 ‘ 𝐵 ) ) = ( 𝑟 · ( 𝐿 ‘ 𝐵 ) ) ) |
| 97 | 95 96 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) = ( 𝑟 · ( 𝐿 ‘ 𝐵 ) ) ) |
| 98 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) | |
| 99 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑅 ∈ ℝ ) |
| 100 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 101 | 2 3 100 | nmrpcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝐵 ) ∈ ℝ+ ) |
| 102 | 37 16 17 101 | syl3anc | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐵 ) ∈ ℝ+ ) |
| 103 | 102 | rpregt0d | ⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝐵 ) ) ) |
| 104 | 103 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝐿 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝐵 ) ) ) |
| 105 | ltmuldiv | ⊢ ( ( 𝑟 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ( ( 𝐿 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝐵 ) ) ) → ( ( 𝑟 · ( 𝐿 ‘ 𝐵 ) ) < 𝑅 ↔ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) | |
| 106 | 22 99 104 105 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑟 · ( 𝐿 ‘ 𝐵 ) ) < 𝑅 ↔ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) |
| 107 | 98 106 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑟 · ( 𝐿 ‘ 𝐵 ) ) < 𝑅 ) |
| 108 | 97 107 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) < 𝑅 ) |
| 109 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑟 · 𝐵 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑟 · 𝐵 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 110 | 91 108 109 | mp2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑟 · 𝐵 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
| 111 | 89 110 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
| 112 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
| 113 | 22 112 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 114 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 115 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑅 ∈ ℝ+ ) |
| 116 | 113 114 115 | ledivmul2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) / 𝑅 ) ≤ 𝐴 ↔ ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ≤ ( 𝐴 · 𝑅 ) ) ) |
| 117 | 111 116 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ≤ ( 𝐴 · 𝑅 ) ) |
| 118 | 114 99 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝐴 · 𝑅 ) ∈ ℝ ) |
| 119 | 33 46 | jca | ⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 120 | 119 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 121 | lemuldiv | ⊢ ( ( 𝑟 ∈ ℝ ∧ ( 𝐴 · 𝑅 ) ∈ ℝ ∧ ( ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) → ( ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ≤ ( 𝐴 · 𝑅 ) ↔ 𝑟 ≤ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) | |
| 122 | 22 118 120 121 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( ( 𝑟 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ≤ ( 𝐴 · 𝑅 ) ↔ 𝑟 ≤ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 123 | 117 122 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → 𝑟 ≤ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 124 | 22 49 123 | lensymd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ¬ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ) |
| 125 | 20 124 | pm2.21dd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℚ ) ∧ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) |
| 126 | 23 102 | rerpdivcld | ⊢ ( 𝜑 → ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ∈ ℝ ) |
| 127 | 14 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 128 | 23 | recnd | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 129 | 39 | recnd | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐵 ) ∈ ℂ ) |
| 130 | mulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( 𝐿 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝐴 · 𝑅 ) · ( 𝐿 ‘ 𝐵 ) ) = ( 𝐴 · ( 𝑅 · ( 𝐿 ‘ 𝐵 ) ) ) ) | |
| 131 | mul12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( 𝐿 ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 · ( 𝑅 · ( 𝐿 ‘ 𝐵 ) ) ) = ( 𝑅 · ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) ) | |
| 132 | 130 131 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( 𝐿 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝐴 · 𝑅 ) · ( 𝐿 ‘ 𝐵 ) ) = ( 𝑅 · ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) ) |
| 133 | 127 128 129 132 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑅 ) · ( 𝐿 ‘ 𝐵 ) ) = ( 𝑅 · ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) ) |
| 134 | 40 33 11 45 | ltmul2dd | ⊢ ( 𝜑 → ( 𝑅 · ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) < ( 𝑅 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 135 | 133 134 | eqbrtrd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑅 ) · ( 𝐿 ‘ 𝐵 ) ) < ( 𝑅 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 136 | lt2mul2div | ⊢ ( ( ( ( 𝐴 · 𝑅 ) ∈ ℝ ∧ ( ( 𝐿 ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝐵 ) ) ) ∧ ( 𝑅 ∈ ℝ ∧ ( ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 < ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( 𝐴 · 𝑅 ) · ( 𝐿 ‘ 𝐵 ) ) < ( 𝑅 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) | |
| 137 | 24 103 23 119 136 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑅 ) · ( 𝐿 ‘ 𝐵 ) ) < ( 𝑅 · ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) |
| 138 | 135 137 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) |
| 139 | qbtwnre | ⊢ ( ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ∈ ℝ ∧ ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) → ∃ 𝑟 ∈ ℚ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) | |
| 140 | 48 126 138 139 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ℚ ( ( ( 𝐴 · 𝑅 ) / ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ) < 𝑟 ∧ 𝑟 < ( 𝑅 / ( 𝐿 ‘ 𝐵 ) ) ) ) |
| 141 | 125 140 | r19.29a | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝐵 ) ) ) |
| 142 | 141 19 | pm2.65i | ⊢ ¬ 𝜑 |