This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qre | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 3 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 4 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 5 | 3 4 | jca | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) ) |
| 6 | redivcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) ∈ ℝ ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 / 𝑦 ) ∈ ℝ ) |
| 8 | 2 5 7 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 / 𝑦 ) ∈ ℝ ) |
| 9 | eleq1 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℝ ↔ ( 𝑥 / 𝑦 ) ∈ ℝ ) ) | |
| 10 | 8 9 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → 𝐴 ∈ ℝ ) ) |
| 11 | 10 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → 𝐴 ∈ ℝ ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |