This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmabs | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | clmsca | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 6 | 5 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = ( ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
| 7 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 8 | subrgsubg | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
| 10 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 11 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
| 12 | eqid | ⊢ ( norm ‘ ( ℂfld ↾s 𝐾 ) ) = ( norm ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 13 | 10 11 12 | subgnm2 | ⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 14 | 9 13 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 15 | 6 14 | eqtr2d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) |