This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of left modules is K -linear. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlin.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| lmhmlin.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| lmhmlin.e | ⊢ 𝐸 = ( Base ‘ 𝑆 ) | ||
| lmhmlin.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| lmhmlin.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | ||
| Assertion | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlin.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| 2 | lmhmlin.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | lmhmlin.e | ⊢ 𝐸 = ( Base ‘ 𝑆 ) | |
| 4 | lmhmlin.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 5 | lmhmlin.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 7 | 1 6 2 3 4 5 | islmhm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = 𝐾 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 8 | 7 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = 𝐾 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 9 | 8 | simp3d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ) |
| 10 | fvoveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) ) | |
| 11 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑏 = 𝑌 → ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝐹 ‘ ( 𝑋 · 𝑏 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 18 | 12 17 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐸 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝑎 × ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 19 | 9 18 | syl5com | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 20 | 19 | 3impib | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 × ( 𝐹 ‘ 𝑌 ) ) ) |