This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | ||
| nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | ||
| nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| nmoleub2a.5 | ⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) | ||
| nmoleub2lem2.6 | ⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) | ||
| nmoleub2lem2.7 | ⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 ) ) | ||
| Assertion | nmoleub2lem2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | |
| 6 | nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 8 | nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 9 | nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 10 | nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 11 | nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 12 | nmoleub2a.5 | ⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) | |
| 13 | nmoleub2lem2.6 | ⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) | |
| 14 | nmoleub2lem2.7 | ⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 ) ) | |
| 15 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 17 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 18 | 16 17 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 19 | 9 15 18 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 21 | 8 | elin1d | ⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
| 22 | nlmngp | ⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) | |
| 23 | 4 17 | nm0 | ⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 24 | 21 22 23 | 3syl | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 25 | 20 24 | eqtrd | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
| 27 | 26 | oveq1d | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) = ( 0 / 𝑅 ) ) |
| 28 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝑅 ∈ ℝ+ ) |
| 29 | 28 | rpcnd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝑅 ∈ ℂ ) |
| 30 | 28 | rpne0d | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝑅 ≠ 0 ) |
| 31 | 29 30 | div0d | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 0 / 𝑅 ) = 0 ) |
| 32 | 27 31 | eqtrd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) = 0 ) |
| 33 | 7 | elin1d | ⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
| 34 | nlmngp | ⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) | |
| 35 | 3 16 | nm0 | ⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 36 | 33 34 35 | 3syl | ⊢ ( 𝜑 → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 38 | 28 | rpgt0d | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 < 𝑅 ) |
| 39 | 37 38 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 ) |
| 40 | fveq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) | |
| 41 | 40 | breq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 ↔ ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 ) ) |
| 42 | 2fveq3 | ⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) | |
| 43 | 42 | oveq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ) |
| 44 | 43 | breq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 45 | 41 44 | imbi12d | ⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 46 | 33 34 | syl | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) |
| 47 | 2 3 | nmcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 48 | 46 47 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 49 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ+ ) |
| 50 | 49 | rpred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ ) |
| 51 | 48 50 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 ) ) |
| 52 | 51 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 53 | 52 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 54 | 53 | imp | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 55 | ngpgrp | ⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp ) | |
| 56 | 2 16 | grpidcl | ⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
| 57 | 46 55 56 | 3syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
| 59 | 45 54 58 | rspcdva | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 60 | 39 59 | mpd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
| 61 | 32 60 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 62 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝜑 ) | |
| 63 | 62 7 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
| 64 | 62 8 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
| 65 | 62 9 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 66 | 62 10 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝐴 ∈ ℝ* ) |
| 67 | 62 11 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑅 ∈ ℝ+ ) |
| 68 | 62 12 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ℚ ⊆ 𝐾 ) |
| 69 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 70 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝐴 ∈ ℝ ) | |
| 71 | 61 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 0 ≤ 𝐴 ) |
| 72 | simplrl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝑉 ) | |
| 73 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑆 ) ) | |
| 74 | 54 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 75 | fveq2 | ⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) | |
| 76 | 75 | breq1d | ⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 ↔ ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 ) ) |
| 77 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) | |
| 78 | 77 | oveq1d | ⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ) |
| 79 | 78 | breq1d | ⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 80 | 76 79 | imbi12d | ⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 81 | 80 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 82 | 74 81 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 83 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) | |
| 84 | 1 2 3 4 5 6 63 64 65 66 67 68 69 70 71 72 73 82 83 | nmoleub2lem3 | ⊢ ¬ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
| 85 | iman | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ↔ ¬ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ) | |
| 86 | 84 85 | mpbir | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
| 87 | 48 50 13 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 88 | 1 2 3 4 5 6 7 8 9 10 11 61 86 87 | nmoleub2lem | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |