This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015) (Proof shortened by AV, 29-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoleub2.n | |- N = ( S normOp T ) |
|
| nmoleub2.v | |- V = ( Base ` S ) |
||
| nmoleub2.l | |- L = ( norm ` S ) |
||
| nmoleub2.m | |- M = ( norm ` T ) |
||
| nmoleub2.g | |- G = ( Scalar ` S ) |
||
| nmoleub2.w | |- K = ( Base ` G ) |
||
| nmoleub2.s | |- ( ph -> S e. ( NrmMod i^i CMod ) ) |
||
| nmoleub2.t | |- ( ph -> T e. ( NrmMod i^i CMod ) ) |
||
| nmoleub2.f | |- ( ph -> F e. ( S LMHom T ) ) |
||
| nmoleub2.a | |- ( ph -> A e. RR* ) |
||
| nmoleub2.r | |- ( ph -> R e. RR+ ) |
||
| nmoleub2a.5 | |- ( ph -> QQ C_ K ) |
||
| nmoleub2lem3.p | |- .x. = ( .s ` S ) |
||
| nmoleub2lem3.1 | |- ( ph -> A e. RR ) |
||
| nmoleub2lem3.2 | |- ( ph -> 0 <_ A ) |
||
| nmoleub2lem3.3 | |- ( ph -> B e. V ) |
||
| nmoleub2lem3.4 | |- ( ph -> B =/= ( 0g ` S ) ) |
||
| nmoleub2lem3.5 | |- ( ph -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
||
| nmoleub2lem3.6 | |- ( ph -> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
||
| Assertion | nmoleub2lem3 | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoleub2.n | |- N = ( S normOp T ) |
|
| 2 | nmoleub2.v | |- V = ( Base ` S ) |
|
| 3 | nmoleub2.l | |- L = ( norm ` S ) |
|
| 4 | nmoleub2.m | |- M = ( norm ` T ) |
|
| 5 | nmoleub2.g | |- G = ( Scalar ` S ) |
|
| 6 | nmoleub2.w | |- K = ( Base ` G ) |
|
| 7 | nmoleub2.s | |- ( ph -> S e. ( NrmMod i^i CMod ) ) |
|
| 8 | nmoleub2.t | |- ( ph -> T e. ( NrmMod i^i CMod ) ) |
|
| 9 | nmoleub2.f | |- ( ph -> F e. ( S LMHom T ) ) |
|
| 10 | nmoleub2.a | |- ( ph -> A e. RR* ) |
|
| 11 | nmoleub2.r | |- ( ph -> R e. RR+ ) |
|
| 12 | nmoleub2a.5 | |- ( ph -> QQ C_ K ) |
|
| 13 | nmoleub2lem3.p | |- .x. = ( .s ` S ) |
|
| 14 | nmoleub2lem3.1 | |- ( ph -> A e. RR ) |
|
| 15 | nmoleub2lem3.2 | |- ( ph -> 0 <_ A ) |
|
| 16 | nmoleub2lem3.3 | |- ( ph -> B e. V ) |
|
| 17 | nmoleub2lem3.4 | |- ( ph -> B =/= ( 0g ` S ) ) |
|
| 18 | nmoleub2lem3.5 | |- ( ph -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
|
| 19 | nmoleub2lem3.6 | |- ( ph -> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
|
| 20 | simprl | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) |
|
| 21 | qre | |- ( r e. QQ -> r e. RR ) |
|
| 22 | 21 | ad2antlr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. RR ) |
| 23 | 11 | rpred | |- ( ph -> R e. RR ) |
| 24 | 14 23 | remulcld | |- ( ph -> ( A x. R ) e. RR ) |
| 25 | 8 | elin1d | |- ( ph -> T e. NrmMod ) |
| 26 | nlmngp | |- ( T e. NrmMod -> T e. NrmGrp ) |
|
| 27 | 25 26 | syl | |- ( ph -> T e. NrmGrp ) |
| 28 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 29 | 2 28 | lmhmf | |- ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) |
| 30 | 9 29 | syl | |- ( ph -> F : V --> ( Base ` T ) ) |
| 31 | 30 16 | ffvelcdmd | |- ( ph -> ( F ` B ) e. ( Base ` T ) ) |
| 32 | 28 4 | nmcl | |- ( ( T e. NrmGrp /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( F ` B ) ) e. RR ) |
| 33 | 27 31 32 | syl2anc | |- ( ph -> ( M ` ( F ` B ) ) e. RR ) |
| 34 | 0red | |- ( ph -> 0 e. RR ) |
|
| 35 | 7 | elin1d | |- ( ph -> S e. NrmMod ) |
| 36 | nlmngp | |- ( S e. NrmMod -> S e. NrmGrp ) |
|
| 37 | 35 36 | syl | |- ( ph -> S e. NrmGrp ) |
| 38 | 2 3 | nmcl | |- ( ( S e. NrmGrp /\ B e. V ) -> ( L ` B ) e. RR ) |
| 39 | 37 16 38 | syl2anc | |- ( ph -> ( L ` B ) e. RR ) |
| 40 | 14 39 | remulcld | |- ( ph -> ( A x. ( L ` B ) ) e. RR ) |
| 41 | 2 3 | nmge0 | |- ( ( S e. NrmGrp /\ B e. V ) -> 0 <_ ( L ` B ) ) |
| 42 | 37 16 41 | syl2anc | |- ( ph -> 0 <_ ( L ` B ) ) |
| 43 | 14 39 15 42 | mulge0d | |- ( ph -> 0 <_ ( A x. ( L ` B ) ) ) |
| 44 | 40 33 | ltnled | |- ( ph -> ( ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) <-> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) ) |
| 45 | 19 44 | mpbird | |- ( ph -> ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) ) |
| 46 | 34 40 33 43 45 | lelttrd | |- ( ph -> 0 < ( M ` ( F ` B ) ) ) |
| 47 | 33 46 | elrpd | |- ( ph -> ( M ` ( F ` B ) ) e. RR+ ) |
| 48 | 24 47 | rerpdivcld | |- ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) |
| 50 | 9 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> F e. ( S LMHom T ) ) |
| 51 | 12 | sselda | |- ( ( ph /\ r e. QQ ) -> r e. K ) |
| 52 | 51 | adantr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. K ) |
| 53 | 16 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> B e. V ) |
| 54 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 55 | 5 6 2 13 54 | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ r e. K /\ B e. V ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) |
| 56 | 50 52 53 55 | syl3anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) |
| 57 | 56 | fveq2d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( M ` ( r ( .s ` T ) ( F ` B ) ) ) ) |
| 58 | 25 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> T e. NrmMod ) |
| 59 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 60 | 5 59 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = G ) |
| 61 | 50 60 | syl | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Scalar ` T ) = G ) |
| 62 | 61 | fveq2d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` G ) ) |
| 63 | 62 6 | eqtr4di | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = K ) |
| 64 | 52 63 | eleqtrrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. ( Base ` ( Scalar ` T ) ) ) |
| 65 | 31 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` B ) e. ( Base ` T ) ) |
| 66 | eqid | |- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
|
| 67 | eqid | |- ( norm ` ( Scalar ` T ) ) = ( norm ` ( Scalar ` T ) ) |
|
| 68 | 28 4 54 59 66 67 | nmvs | |- ( ( T e. NrmMod /\ r e. ( Base ` ( Scalar ` T ) ) /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) |
| 69 | 58 64 65 68 | syl3anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) |
| 70 | 61 | fveq2d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( norm ` ( Scalar ` T ) ) = ( norm ` G ) ) |
| 71 | 70 | fveq1d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = ( ( norm ` G ) ` r ) ) |
| 72 | 7 | elin2d | |- ( ph -> S e. CMod ) |
| 73 | 72 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. CMod ) |
| 74 | 5 6 | clmabs | |- ( ( S e. CMod /\ r e. K ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) |
| 75 | 73 52 74 | syl2anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) |
| 76 | 0red | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 e. RR ) |
|
| 77 | 11 | rpge0d | |- ( ph -> 0 <_ R ) |
| 78 | 14 23 15 77 | mulge0d | |- ( ph -> 0 <_ ( A x. R ) ) |
| 79 | divge0 | |- ( ( ( ( A x. R ) e. RR /\ 0 <_ ( A x. R ) ) /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
|
| 80 | 24 78 33 46 79 | syl22anc | |- ( ph -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 81 | 80 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 82 | 76 49 22 81 20 | lelttrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 < r ) |
| 83 | 76 22 82 | ltled | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ r ) |
| 84 | 22 83 | absidd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = r ) |
| 85 | 75 84 | eqtr3d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` G ) ` r ) = r ) |
| 86 | 71 85 | eqtrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = r ) |
| 87 | 86 | oveq1d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) |
| 88 | 57 69 87 | 3eqtrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) |
| 89 | 88 | oveq1d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) = ( ( r x. ( M ` ( F ` B ) ) ) / R ) ) |
| 90 | 2 5 13 6 | clmvscl | |- ( ( S e. CMod /\ r e. K /\ B e. V ) -> ( r .x. B ) e. V ) |
| 91 | 73 52 53 90 | syl3anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r .x. B ) e. V ) |
| 92 | 35 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. NrmMod ) |
| 93 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 94 | 2 3 13 5 6 93 | nmvs | |- ( ( S e. NrmMod /\ r e. K /\ B e. V ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) |
| 95 | 92 52 53 94 | syl3anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) |
| 96 | 85 | oveq1d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) = ( r x. ( L ` B ) ) ) |
| 97 | 95 96 | eqtrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( r x. ( L ` B ) ) ) |
| 98 | simprr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r < ( R / ( L ` B ) ) ) |
|
| 99 | 23 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR ) |
| 100 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 101 | 2 3 100 | nmrpcl | |- ( ( S e. NrmGrp /\ B e. V /\ B =/= ( 0g ` S ) ) -> ( L ` B ) e. RR+ ) |
| 102 | 37 16 17 101 | syl3anc | |- ( ph -> ( L ` B ) e. RR+ ) |
| 103 | 102 | rpregt0d | |- ( ph -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) |
| 104 | 103 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) |
| 105 | ltmuldiv | |- ( ( r e. RR /\ R e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) |
|
| 106 | 22 99 104 105 | syl3anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) |
| 107 | 98 106 | mpbird | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( L ` B ) ) < R ) |
| 108 | 97 107 | eqbrtrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) < R ) |
| 109 | 18 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
| 110 | 91 108 109 | mp2d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) |
| 111 | 89 110 | eqbrtrrd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A ) |
| 112 | 33 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) e. RR ) |
| 113 | 22 112 | remulcld | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) e. RR ) |
| 114 | 14 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> A e. RR ) |
| 115 | 11 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR+ ) |
| 116 | 113 114 115 | ledivmul2d | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A <-> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) ) |
| 117 | 111 116 | mpbid | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) |
| 118 | 114 99 | remulcld | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( A x. R ) e. RR ) |
| 119 | 33 46 | jca | |- ( ph -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) |
| 120 | 119 | ad2antrr | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) |
| 121 | lemuldiv | |- ( ( r e. RR /\ ( A x. R ) e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) |
|
| 122 | 22 118 120 121 | syl3anc | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) |
| 123 | 117 122 | mpbid | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 124 | 22 49 123 | lensymd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> -. ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) |
| 125 | 20 124 | pm2.21dd | |- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
| 126 | 23 102 | rerpdivcld | |- ( ph -> ( R / ( L ` B ) ) e. RR ) |
| 127 | 14 | recnd | |- ( ph -> A e. CC ) |
| 128 | 23 | recnd | |- ( ph -> R e. CC ) |
| 129 | 39 | recnd | |- ( ph -> ( L ` B ) e. CC ) |
| 130 | mulass | |- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( A x. ( R x. ( L ` B ) ) ) ) |
|
| 131 | mul12 | |- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( A x. ( R x. ( L ` B ) ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
|
| 132 | 130 131 | eqtrd | |- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
| 133 | 127 128 129 132 | syl3anc | |- ( ph -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
| 134 | 40 33 11 45 | ltmul2dd | |- ( ph -> ( R x. ( A x. ( L ` B ) ) ) < ( R x. ( M ` ( F ` B ) ) ) ) |
| 135 | 133 134 | eqbrtrd | |- ( ph -> ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) ) |
| 136 | lt2mul2div | |- ( ( ( ( A x. R ) e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) /\ ( R e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) ) -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) |
|
| 137 | 24 103 23 119 136 | syl22anc | |- ( ph -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) |
| 138 | 135 137 | mpbid | |- ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) |
| 139 | qbtwnre | |- ( ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR /\ ( R / ( L ` B ) ) e. RR /\ ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) |
|
| 140 | 48 126 138 139 | syl3anc | |- ( ph -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) |
| 141 | 125 140 | r19.29a | |- ( ph -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
| 142 | 141 19 | pm2.65i | |- -. ph |