This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑄 · 𝑋 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 6 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑄 · 𝑋 ) ∈ 𝑉 ) |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑄 · 𝑋 ) ∈ 𝑉 ) |