This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnlm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| isnlm.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| isnlm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| isnlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| isnlm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| isnlm.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | ||
| Assertion | nmvs | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | isnlm.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 3 | isnlm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | isnlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | isnlm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | isnlm.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | |
| 7 | 1 2 3 4 5 6 | isnlm | ⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 8 | 7 | simprbi | ⊢ ( 𝑊 ∈ NrmMod → ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 9 | fvoveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑌 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 18 | 12 17 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 19 | 8 18 | syl5com | ⊢ ( 𝑊 ∈ NrmMod → ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 20 | 19 | 3impib | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |